Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y\left(7y+1\right)=0
Factor out y.
y=0 y=-\frac{1}{7}
To find equation solutions, solve y=0 and 7y+1=0.
7y^{2}+y=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-1±\sqrt{1^{2}}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 1 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-1±1}{2\times 7}
Take the square root of 1^{2}.
y=\frac{-1±1}{14}
Multiply 2 times 7.
y=\frac{0}{14}
Now solve the equation y=\frac{-1±1}{14} when ± is plus. Add -1 to 1.
y=0
Divide 0 by 14.
y=-\frac{2}{14}
Now solve the equation y=\frac{-1±1}{14} when ± is minus. Subtract 1 from -1.
y=-\frac{1}{7}
Reduce the fraction \frac{-2}{14} to lowest terms by extracting and canceling out 2.
y=0 y=-\frac{1}{7}
The equation is now solved.
7y^{2}+y=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{7y^{2}+y}{7}=\frac{0}{7}
Divide both sides by 7.
y^{2}+\frac{1}{7}y=\frac{0}{7}
Dividing by 7 undoes the multiplication by 7.
y^{2}+\frac{1}{7}y=0
Divide 0 by 7.
y^{2}+\frac{1}{7}y+\left(\frac{1}{14}\right)^{2}=\left(\frac{1}{14}\right)^{2}
Divide \frac{1}{7}, the coefficient of the x term, by 2 to get \frac{1}{14}. Then add the square of \frac{1}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{1}{7}y+\frac{1}{196}=\frac{1}{196}
Square \frac{1}{14} by squaring both the numerator and the denominator of the fraction.
\left(y+\frac{1}{14}\right)^{2}=\frac{1}{196}
Factor y^{2}+\frac{1}{7}y+\frac{1}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{1}{14}\right)^{2}}=\sqrt{\frac{1}{196}}
Take the square root of both sides of the equation.
y+\frac{1}{14}=\frac{1}{14} y+\frac{1}{14}=-\frac{1}{14}
Simplify.
y=0 y=-\frac{1}{7}
Subtract \frac{1}{14} from both sides of the equation.