Skip to main content
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

7y^{2}+3y^{2}+28=0
Multiply y and y to get y^{2}.
10y^{2}+28=0
Combine 7y^{2} and 3y^{2} to get 10y^{2}.
10y^{2}=-28
Subtract 28 from both sides. Anything subtracted from zero gives its negation.
y^{2}=\frac{-28}{10}
Divide both sides by 10.
y^{2}=-\frac{14}{5}
Reduce the fraction \frac{-28}{10} to lowest terms by extracting and canceling out 2.
y=\frac{\sqrt{70}i}{5} y=-\frac{\sqrt{70}i}{5}
The equation is now solved.
7y^{2}+3y^{2}+28=0
Multiply y and y to get y^{2}.
10y^{2}+28=0
Combine 7y^{2} and 3y^{2} to get 10y^{2}.
y=\frac{0±\sqrt{0^{2}-4\times 10\times 28}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 0 for b, and 28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 10\times 28}}{2\times 10}
Square 0.
y=\frac{0±\sqrt{-40\times 28}}{2\times 10}
Multiply -4 times 10.
y=\frac{0±\sqrt{-1120}}{2\times 10}
Multiply -40 times 28.
y=\frac{0±4\sqrt{70}i}{2\times 10}
Take the square root of -1120.
y=\frac{0±4\sqrt{70}i}{20}
Multiply 2 times 10.
y=\frac{\sqrt{70}i}{5}
Now solve the equation y=\frac{0±4\sqrt{70}i}{20} when ± is plus.
y=-\frac{\sqrt{70}i}{5}
Now solve the equation y=\frac{0±4\sqrt{70}i}{20} when ± is minus.
y=\frac{\sqrt{70}i}{5} y=-\frac{\sqrt{70}i}{5}
The equation is now solved.