Solve for y
y=-\frac{\sqrt{70}i}{5}\approx -0-1.673320053i
y=\frac{\sqrt{70}i}{5}\approx 1.673320053i
Share
Copied to clipboard
7y^{2}+3y^{2}+28=0
Multiply y and y to get y^{2}.
10y^{2}+28=0
Combine 7y^{2} and 3y^{2} to get 10y^{2}.
10y^{2}=-28
Subtract 28 from both sides. Anything subtracted from zero gives its negation.
y^{2}=\frac{-28}{10}
Divide both sides by 10.
y^{2}=-\frac{14}{5}
Reduce the fraction \frac{-28}{10} to lowest terms by extracting and canceling out 2.
y=\frac{\sqrt{70}i}{5} y=-\frac{\sqrt{70}i}{5}
The equation is now solved.
7y^{2}+3y^{2}+28=0
Multiply y and y to get y^{2}.
10y^{2}+28=0
Combine 7y^{2} and 3y^{2} to get 10y^{2}.
y=\frac{0±\sqrt{0^{2}-4\times 10\times 28}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 0 for b, and 28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 10\times 28}}{2\times 10}
Square 0.
y=\frac{0±\sqrt{-40\times 28}}{2\times 10}
Multiply -4 times 10.
y=\frac{0±\sqrt{-1120}}{2\times 10}
Multiply -40 times 28.
y=\frac{0±4\sqrt{70}i}{2\times 10}
Take the square root of -1120.
y=\frac{0±4\sqrt{70}i}{20}
Multiply 2 times 10.
y=\frac{\sqrt{70}i}{5}
Now solve the equation y=\frac{0±4\sqrt{70}i}{20} when ± is plus.
y=-\frac{\sqrt{70}i}{5}
Now solve the equation y=\frac{0±4\sqrt{70}i}{20} when ± is minus.
y=\frac{\sqrt{70}i}{5} y=-\frac{\sqrt{70}i}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}