Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}+7y-30
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=7 ab=1\left(-30\right)=-30
Factor the expression by grouping. First, the expression needs to be rewritten as y^{2}+ay+by-30. To find a and b, set up a system to be solved.
-1,30 -2,15 -3,10 -5,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Calculate the sum for each pair.
a=-3 b=10
The solution is the pair that gives sum 7.
\left(y^{2}-3y\right)+\left(10y-30\right)
Rewrite y^{2}+7y-30 as \left(y^{2}-3y\right)+\left(10y-30\right).
y\left(y-3\right)+10\left(y-3\right)
Factor out y in the first and 10 in the second group.
\left(y-3\right)\left(y+10\right)
Factor out common term y-3 by using distributive property.
y^{2}+7y-30=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-7±\sqrt{7^{2}-4\left(-30\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-7±\sqrt{49-4\left(-30\right)}}{2}
Square 7.
y=\frac{-7±\sqrt{49+120}}{2}
Multiply -4 times -30.
y=\frac{-7±\sqrt{169}}{2}
Add 49 to 120.
y=\frac{-7±13}{2}
Take the square root of 169.
y=\frac{6}{2}
Now solve the equation y=\frac{-7±13}{2} when ± is plus. Add -7 to 13.
y=3
Divide 6 by 2.
y=-\frac{20}{2}
Now solve the equation y=\frac{-7±13}{2} when ± is minus. Subtract 13 from -7.
y=-10
Divide -20 by 2.
y^{2}+7y-30=\left(y-3\right)\left(y-\left(-10\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and -10 for x_{2}.
y^{2}+7y-30=\left(y-3\right)\left(y+10\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.