Solve for x
x=-\frac{4z}{3}-\frac{7y}{6}+\frac{1}{2}
Solve for y
y=\frac{3-8z-6x}{7}
Share
Copied to clipboard
7y+8z+6x+6=9
Use the distributive property to multiply 6 by x+1.
8z+6x+6=9-7y
Subtract 7y from both sides.
6x+6=9-7y-8z
Subtract 8z from both sides.
6x=9-7y-8z-6
Subtract 6 from both sides.
6x=3-7y-8z
Subtract 6 from 9 to get 3.
6x=3-8z-7y
The equation is in standard form.
\frac{6x}{6}=\frac{3-8z-7y}{6}
Divide both sides by 6.
x=\frac{3-8z-7y}{6}
Dividing by 6 undoes the multiplication by 6.
x=-\frac{4z}{3}-\frac{7y}{6}+\frac{1}{2}
Divide 3-7y-8z by 6.
7y+8z+6x+6=9
Use the distributive property to multiply 6 by x+1.
7y+6x+6=9-8z
Subtract 8z from both sides.
7y+6=9-8z-6x
Subtract 6x from both sides.
7y=9-8z-6x-6
Subtract 6 from both sides.
7y=3-8z-6x
Subtract 6 from 9 to get 3.
\frac{7y}{7}=\frac{3-8z-6x}{7}
Divide both sides by 7.
y=\frac{3-8z-6x}{7}
Dividing by 7 undoes the multiplication by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}