Solve for x (complex solution)
x=\frac{227+\sqrt{29951}i}{582}\approx 0.390034364+0.29736009i
x=\frac{-\sqrt{29951}i+227}{582}\approx 0.390034364-0.29736009i
Graph
Share
Copied to clipboard
7x\times 30x+30x\left(-7\right)-15x\left(5-7x\right)=6x\left(4x-3\right)-10\left(7+4x\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30x, the least common multiple of 2,5,3x.
210xx+30x\left(-7\right)-15x\left(5-7x\right)=6x\left(4x-3\right)-10\left(7+4x\right)
Multiply 7 and 30 to get 210.
210x^{2}+30x\left(-7\right)-15x\left(5-7x\right)=6x\left(4x-3\right)-10\left(7+4x\right)
Multiply x and x to get x^{2}.
210x^{2}-210x-15x\left(5-7x\right)=6x\left(4x-3\right)-10\left(7+4x\right)
Multiply 30 and -7 to get -210.
210x^{2}-210x-\left(75x-105x^{2}\right)=6x\left(4x-3\right)-10\left(7+4x\right)
Use the distributive property to multiply 15x by 5-7x.
210x^{2}-210x-75x+105x^{2}=6x\left(4x-3\right)-10\left(7+4x\right)
To find the opposite of 75x-105x^{2}, find the opposite of each term.
210x^{2}-285x+105x^{2}=6x\left(4x-3\right)-10\left(7+4x\right)
Combine -210x and -75x to get -285x.
315x^{2}-285x=6x\left(4x-3\right)-10\left(7+4x\right)
Combine 210x^{2} and 105x^{2} to get 315x^{2}.
315x^{2}-285x=24x^{2}-18x-10\left(7+4x\right)
Use the distributive property to multiply 6x by 4x-3.
315x^{2}-285x=24x^{2}-18x-70-40x
Use the distributive property to multiply -10 by 7+4x.
315x^{2}-285x=24x^{2}-58x-70
Combine -18x and -40x to get -58x.
315x^{2}-285x-24x^{2}=-58x-70
Subtract 24x^{2} from both sides.
291x^{2}-285x=-58x-70
Combine 315x^{2} and -24x^{2} to get 291x^{2}.
291x^{2}-285x+58x=-70
Add 58x to both sides.
291x^{2}-227x=-70
Combine -285x and 58x to get -227x.
291x^{2}-227x+70=0
Add 70 to both sides.
x=\frac{-\left(-227\right)±\sqrt{\left(-227\right)^{2}-4\times 291\times 70}}{2\times 291}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 291 for a, -227 for b, and 70 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-227\right)±\sqrt{51529-4\times 291\times 70}}{2\times 291}
Square -227.
x=\frac{-\left(-227\right)±\sqrt{51529-1164\times 70}}{2\times 291}
Multiply -4 times 291.
x=\frac{-\left(-227\right)±\sqrt{51529-81480}}{2\times 291}
Multiply -1164 times 70.
x=\frac{-\left(-227\right)±\sqrt{-29951}}{2\times 291}
Add 51529 to -81480.
x=\frac{-\left(-227\right)±\sqrt{29951}i}{2\times 291}
Take the square root of -29951.
x=\frac{227±\sqrt{29951}i}{2\times 291}
The opposite of -227 is 227.
x=\frac{227±\sqrt{29951}i}{582}
Multiply 2 times 291.
x=\frac{227+\sqrt{29951}i}{582}
Now solve the equation x=\frac{227±\sqrt{29951}i}{582} when ± is plus. Add 227 to i\sqrt{29951}.
x=\frac{-\sqrt{29951}i+227}{582}
Now solve the equation x=\frac{227±\sqrt{29951}i}{582} when ± is minus. Subtract i\sqrt{29951} from 227.
x=\frac{227+\sqrt{29951}i}{582} x=\frac{-\sqrt{29951}i+227}{582}
The equation is now solved.
7x\times 30x+30x\left(-7\right)-15x\left(5-7x\right)=6x\left(4x-3\right)-10\left(7+4x\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30x, the least common multiple of 2,5,3x.
210xx+30x\left(-7\right)-15x\left(5-7x\right)=6x\left(4x-3\right)-10\left(7+4x\right)
Multiply 7 and 30 to get 210.
210x^{2}+30x\left(-7\right)-15x\left(5-7x\right)=6x\left(4x-3\right)-10\left(7+4x\right)
Multiply x and x to get x^{2}.
210x^{2}-210x-15x\left(5-7x\right)=6x\left(4x-3\right)-10\left(7+4x\right)
Multiply 30 and -7 to get -210.
210x^{2}-210x-\left(75x-105x^{2}\right)=6x\left(4x-3\right)-10\left(7+4x\right)
Use the distributive property to multiply 15x by 5-7x.
210x^{2}-210x-75x+105x^{2}=6x\left(4x-3\right)-10\left(7+4x\right)
To find the opposite of 75x-105x^{2}, find the opposite of each term.
210x^{2}-285x+105x^{2}=6x\left(4x-3\right)-10\left(7+4x\right)
Combine -210x and -75x to get -285x.
315x^{2}-285x=6x\left(4x-3\right)-10\left(7+4x\right)
Combine 210x^{2} and 105x^{2} to get 315x^{2}.
315x^{2}-285x=24x^{2}-18x-10\left(7+4x\right)
Use the distributive property to multiply 6x by 4x-3.
315x^{2}-285x=24x^{2}-18x-70-40x
Use the distributive property to multiply -10 by 7+4x.
315x^{2}-285x=24x^{2}-58x-70
Combine -18x and -40x to get -58x.
315x^{2}-285x-24x^{2}=-58x-70
Subtract 24x^{2} from both sides.
291x^{2}-285x=-58x-70
Combine 315x^{2} and -24x^{2} to get 291x^{2}.
291x^{2}-285x+58x=-70
Add 58x to both sides.
291x^{2}-227x=-70
Combine -285x and 58x to get -227x.
\frac{291x^{2}-227x}{291}=-\frac{70}{291}
Divide both sides by 291.
x^{2}-\frac{227}{291}x=-\frac{70}{291}
Dividing by 291 undoes the multiplication by 291.
x^{2}-\frac{227}{291}x+\left(-\frac{227}{582}\right)^{2}=-\frac{70}{291}+\left(-\frac{227}{582}\right)^{2}
Divide -\frac{227}{291}, the coefficient of the x term, by 2 to get -\frac{227}{582}. Then add the square of -\frac{227}{582} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{227}{291}x+\frac{51529}{338724}=-\frac{70}{291}+\frac{51529}{338724}
Square -\frac{227}{582} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{227}{291}x+\frac{51529}{338724}=-\frac{29951}{338724}
Add -\frac{70}{291} to \frac{51529}{338724} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{227}{582}\right)^{2}=-\frac{29951}{338724}
Factor x^{2}-\frac{227}{291}x+\frac{51529}{338724}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{227}{582}\right)^{2}}=\sqrt{-\frac{29951}{338724}}
Take the square root of both sides of the equation.
x-\frac{227}{582}=\frac{\sqrt{29951}i}{582} x-\frac{227}{582}=-\frac{\sqrt{29951}i}{582}
Simplify.
x=\frac{227+\sqrt{29951}i}{582} x=\frac{-\sqrt{29951}i+227}{582}
Add \frac{227}{582} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}