Solve for x (complex solution)
x=\frac{-\sqrt{31}i+1}{8}\approx 0.125-0.695970545i
x=\frac{1+\sqrt{31}i}{8}\approx 0.125+0.695970545i
Graph
Share
Copied to clipboard
7x-6-2x=4x-3-1+4x^{2}
Subtract 5 from -1 to get -6.
5x-6=4x-3-1+4x^{2}
Combine 7x and -2x to get 5x.
5x-6=4x-4+4x^{2}
Subtract 1 from -3 to get -4.
5x-6-4x=-4+4x^{2}
Subtract 4x from both sides.
x-6=-4+4x^{2}
Combine 5x and -4x to get x.
x-6-\left(-4\right)=4x^{2}
Subtract -4 from both sides.
x-6+4=4x^{2}
The opposite of -4 is 4.
x-6+4-4x^{2}=0
Subtract 4x^{2} from both sides.
x-2-4x^{2}=0
Add -6 and 4 to get -2.
-4x^{2}+x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-4\right)\left(-2\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 1 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-4\right)\left(-2\right)}}{2\left(-4\right)}
Square 1.
x=\frac{-1±\sqrt{1+16\left(-2\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-1±\sqrt{1-32}}{2\left(-4\right)}
Multiply 16 times -2.
x=\frac{-1±\sqrt{-31}}{2\left(-4\right)}
Add 1 to -32.
x=\frac{-1±\sqrt{31}i}{2\left(-4\right)}
Take the square root of -31.
x=\frac{-1±\sqrt{31}i}{-8}
Multiply 2 times -4.
x=\frac{-1+\sqrt{31}i}{-8}
Now solve the equation x=\frac{-1±\sqrt{31}i}{-8} when ± is plus. Add -1 to i\sqrt{31}.
x=\frac{-\sqrt{31}i+1}{8}
Divide -1+i\sqrt{31} by -8.
x=\frac{-\sqrt{31}i-1}{-8}
Now solve the equation x=\frac{-1±\sqrt{31}i}{-8} when ± is minus. Subtract i\sqrt{31} from -1.
x=\frac{1+\sqrt{31}i}{8}
Divide -1-i\sqrt{31} by -8.
x=\frac{-\sqrt{31}i+1}{8} x=\frac{1+\sqrt{31}i}{8}
The equation is now solved.
7x-6-2x=4x-3-1+4x^{2}
Subtract 5 from -1 to get -6.
5x-6=4x-3-1+4x^{2}
Combine 7x and -2x to get 5x.
5x-6=4x-4+4x^{2}
Subtract 1 from -3 to get -4.
5x-6-4x=-4+4x^{2}
Subtract 4x from both sides.
x-6=-4+4x^{2}
Combine 5x and -4x to get x.
x-6-4x^{2}=-4
Subtract 4x^{2} from both sides.
x-4x^{2}=-4+6
Add 6 to both sides.
x-4x^{2}=2
Add -4 and 6 to get 2.
-4x^{2}+x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+x}{-4}=\frac{2}{-4}
Divide both sides by -4.
x^{2}+\frac{1}{-4}x=\frac{2}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{1}{4}x=\frac{2}{-4}
Divide 1 by -4.
x^{2}-\frac{1}{4}x=-\frac{1}{2}
Reduce the fraction \frac{2}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=-\frac{1}{2}+\left(-\frac{1}{8}\right)^{2}
Divide -\frac{1}{4}, the coefficient of the x term, by 2 to get -\frac{1}{8}. Then add the square of -\frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{4}x+\frac{1}{64}=-\frac{1}{2}+\frac{1}{64}
Square -\frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{4}x+\frac{1}{64}=-\frac{31}{64}
Add -\frac{1}{2} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{8}\right)^{2}=-\frac{31}{64}
Factor x^{2}-\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{-\frac{31}{64}}
Take the square root of both sides of the equation.
x-\frac{1}{8}=\frac{\sqrt{31}i}{8} x-\frac{1}{8}=-\frac{\sqrt{31}i}{8}
Simplify.
x=\frac{1+\sqrt{31}i}{8} x=\frac{-\sqrt{31}i+1}{8}
Add \frac{1}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}