Solve for x (complex solution)
x=i
x=-i
x=-\sqrt{3}i\approx -0-1.732050808i
x=\sqrt{3}i\approx 1.732050808i
Graph
Share
Copied to clipboard
7x^{4}+28x^{2}=-21
Add 28x^{2} to both sides.
7x^{4}+28x^{2}+21=0
Add 21 to both sides.
7t^{2}+28t+21=0
Substitute t for x^{2}.
t=\frac{-28±\sqrt{28^{2}-4\times 7\times 21}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 7 for a, 28 for b, and 21 for c in the quadratic formula.
t=\frac{-28±14}{14}
Do the calculations.
t=-1 t=-3
Solve the equation t=\frac{-28±14}{14} when ± is plus and when ± is minus.
x=-i x=i x=-\sqrt{3}i x=\sqrt{3}i
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}