Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{7^{1}x^{3}y^{1}}{\left(-\frac{14}{3}\right)^{1}x^{1}y^{1}}
Use the rules of exponents to simplify the expression.
\frac{7^{1}}{\left(-\frac{14}{3}\right)^{1}}x^{3-1}y^{1-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{7^{1}}{\left(-\frac{14}{3}\right)^{1}}x^{2}y^{1-1}
Subtract 1 from 3.
\frac{7^{1}}{\left(-\frac{14}{3}\right)^{1}}x^{2}y^{0}
Subtract 1 from 1.
\frac{7^{1}}{\left(-\frac{14}{3}\right)^{1}}x^{2}
For any number a except 0, a^{0}=1.
-\frac{3}{2}x^{2}
Divide 7 by -\frac{14}{3} by multiplying 7 by the reciprocal of -\frac{14}{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7y}{-\frac{14y}{3}}x^{3-1})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{3}{2}x^{2})
Do the arithmetic.
2\left(-\frac{3}{2}\right)x^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-3x^{1}
Do the arithmetic.
-3x
For any term t, t^{1}=t.