Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(7x^{2}-36x-36\right)
Factor out x.
a+b=-36 ab=7\left(-36\right)=-252
Consider 7x^{2}-36x-36. Factor the expression by grouping. First, the expression needs to be rewritten as 7x^{2}+ax+bx-36. To find a and b, set up a system to be solved.
1,-252 2,-126 3,-84 4,-63 6,-42 7,-36 9,-28 12,-21 14,-18
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -252.
1-252=-251 2-126=-124 3-84=-81 4-63=-59 6-42=-36 7-36=-29 9-28=-19 12-21=-9 14-18=-4
Calculate the sum for each pair.
a=-42 b=6
The solution is the pair that gives sum -36.
\left(7x^{2}-42x\right)+\left(6x-36\right)
Rewrite 7x^{2}-36x-36 as \left(7x^{2}-42x\right)+\left(6x-36\right).
7x\left(x-6\right)+6\left(x-6\right)
Factor out 7x in the first and 6 in the second group.
\left(x-6\right)\left(7x+6\right)
Factor out common term x-6 by using distributive property.
x\left(x-6\right)\left(7x+6\right)
Rewrite the complete factored expression.