Evaluate
-\frac{21y^{6}x^{11}}{2}
Expand
-\frac{21y^{6}x^{11}}{2}
Share
Copied to clipboard
\frac{7x^{2}y\times 3}{16}x^{6}y^{2}\left(-2xy\right)^{3}
Divide 7x^{2}y by \frac{16}{3} by multiplying 7x^{2}y by the reciprocal of \frac{16}{3}.
\frac{21x^{2}y}{16}x^{6}y^{2}\left(-2xy\right)^{3}
Multiply 7 and 3 to get 21.
\frac{21x^{2}y}{16}x^{6}y^{2}\left(-2\right)^{3}x^{3}y^{3}
Expand \left(-2xy\right)^{3}.
\frac{21x^{2}y}{16}x^{6}y^{2}\left(-8\right)x^{3}y^{3}
Calculate -2 to the power of 3 and get -8.
\frac{21x^{2}y}{16}x^{9}y^{2}\left(-8\right)y^{3}
To multiply powers of the same base, add their exponents. Add 6 and 3 to get 9.
\frac{21x^{2}y}{16}x^{9}y^{5}\left(-8\right)
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{21x^{2}yx^{9}}{16}y^{5}\left(-8\right)
Express \frac{21x^{2}y}{16}x^{9} as a single fraction.
\frac{21x^{2}yx^{9}y^{5}}{16}\left(-8\right)
Express \frac{21x^{2}yx^{9}}{16}y^{5} as a single fraction.
\frac{21x^{2}yx^{9}y^{5}}{-2}
Cancel out 16, the greatest common factor in 8 and 16.
\frac{21x^{11}yy^{5}}{-2}
To multiply powers of the same base, add their exponents. Add 2 and 9 to get 11.
\frac{21x^{11}y^{6}}{-2}
To multiply powers of the same base, add their exponents. Add 1 and 5 to get 6.
\frac{7x^{2}y\times 3}{16}x^{6}y^{2}\left(-2xy\right)^{3}
Divide 7x^{2}y by \frac{16}{3} by multiplying 7x^{2}y by the reciprocal of \frac{16}{3}.
\frac{21x^{2}y}{16}x^{6}y^{2}\left(-2xy\right)^{3}
Multiply 7 and 3 to get 21.
\frac{21x^{2}y}{16}x^{6}y^{2}\left(-2\right)^{3}x^{3}y^{3}
Expand \left(-2xy\right)^{3}.
\frac{21x^{2}y}{16}x^{6}y^{2}\left(-8\right)x^{3}y^{3}
Calculate -2 to the power of 3 and get -8.
\frac{21x^{2}y}{16}x^{9}y^{2}\left(-8\right)y^{3}
To multiply powers of the same base, add their exponents. Add 6 and 3 to get 9.
\frac{21x^{2}y}{16}x^{9}y^{5}\left(-8\right)
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{21x^{2}yx^{9}}{16}y^{5}\left(-8\right)
Express \frac{21x^{2}y}{16}x^{9} as a single fraction.
\frac{21x^{2}yx^{9}y^{5}}{16}\left(-8\right)
Express \frac{21x^{2}yx^{9}}{16}y^{5} as a single fraction.
\frac{21x^{2}yx^{9}y^{5}}{-2}
Cancel out 16, the greatest common factor in 8 and 16.
\frac{21x^{11}yy^{5}}{-2}
To multiply powers of the same base, add their exponents. Add 2 and 9 to get 11.
\frac{21x^{11}y^{6}}{-2}
To multiply powers of the same base, add their exponents. Add 1 and 5 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}