Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(7x^{2}-3x-9)
Combine -8x and 5x to get -3x.
7x^{2}-3x-9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 7\left(-9\right)}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 7\left(-9\right)}}{2\times 7}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-28\left(-9\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-3\right)±\sqrt{9+252}}{2\times 7}
Multiply -28 times -9.
x=\frac{-\left(-3\right)±\sqrt{261}}{2\times 7}
Add 9 to 252.
x=\frac{-\left(-3\right)±3\sqrt{29}}{2\times 7}
Take the square root of 261.
x=\frac{3±3\sqrt{29}}{2\times 7}
The opposite of -3 is 3.
x=\frac{3±3\sqrt{29}}{14}
Multiply 2 times 7.
x=\frac{3\sqrt{29}+3}{14}
Now solve the equation x=\frac{3±3\sqrt{29}}{14} when ± is plus. Add 3 to 3\sqrt{29}.
x=\frac{3-3\sqrt{29}}{14}
Now solve the equation x=\frac{3±3\sqrt{29}}{14} when ± is minus. Subtract 3\sqrt{29} from 3.
7x^{2}-3x-9=7\left(x-\frac{3\sqrt{29}+3}{14}\right)\left(x-\frac{3-3\sqrt{29}}{14}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3+3\sqrt{29}}{14} for x_{1} and \frac{3-3\sqrt{29}}{14} for x_{2}.
7x^{2}-3x-9
Combine -8x and 5x to get -3x.