Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}-6x+9=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
7x^{2}-6x+9-4=4-4
Subtract 4 from both sides of the equation.
7x^{2}-6x+9-4=0
Subtracting 4 from itself leaves 0.
7x^{2}-6x+5=0
Subtract 4 from 9.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 7\times 5}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -6 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 7\times 5}}{2\times 7}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-28\times 5}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-6\right)±\sqrt{36-140}}{2\times 7}
Multiply -28 times 5.
x=\frac{-\left(-6\right)±\sqrt{-104}}{2\times 7}
Add 36 to -140.
x=\frac{-\left(-6\right)±2\sqrt{26}i}{2\times 7}
Take the square root of -104.
x=\frac{6±2\sqrt{26}i}{2\times 7}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{26}i}{14}
Multiply 2 times 7.
x=\frac{6+2\sqrt{26}i}{14}
Now solve the equation x=\frac{6±2\sqrt{26}i}{14} when ± is plus. Add 6 to 2i\sqrt{26}.
x=\frac{3+\sqrt{26}i}{7}
Divide 6+2i\sqrt{26} by 14.
x=\frac{-2\sqrt{26}i+6}{14}
Now solve the equation x=\frac{6±2\sqrt{26}i}{14} when ± is minus. Subtract 2i\sqrt{26} from 6.
x=\frac{-\sqrt{26}i+3}{7}
Divide 6-2i\sqrt{26} by 14.
x=\frac{3+\sqrt{26}i}{7} x=\frac{-\sqrt{26}i+3}{7}
The equation is now solved.
7x^{2}-6x+9=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}-6x+9-9=4-9
Subtract 9 from both sides of the equation.
7x^{2}-6x=4-9
Subtracting 9 from itself leaves 0.
7x^{2}-6x=-5
Subtract 9 from 4.
\frac{7x^{2}-6x}{7}=-\frac{5}{7}
Divide both sides by 7.
x^{2}-\frac{6}{7}x=-\frac{5}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{6}{7}x+\left(-\frac{3}{7}\right)^{2}=-\frac{5}{7}+\left(-\frac{3}{7}\right)^{2}
Divide -\frac{6}{7}, the coefficient of the x term, by 2 to get -\frac{3}{7}. Then add the square of -\frac{3}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{6}{7}x+\frac{9}{49}=-\frac{5}{7}+\frac{9}{49}
Square -\frac{3}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{6}{7}x+\frac{9}{49}=-\frac{26}{49}
Add -\frac{5}{7} to \frac{9}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{7}\right)^{2}=-\frac{26}{49}
Factor x^{2}-\frac{6}{7}x+\frac{9}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{7}\right)^{2}}=\sqrt{-\frac{26}{49}}
Take the square root of both sides of the equation.
x-\frac{3}{7}=\frac{\sqrt{26}i}{7} x-\frac{3}{7}=-\frac{\sqrt{26}i}{7}
Simplify.
x=\frac{3+\sqrt{26}i}{7} x=\frac{-\sqrt{26}i+3}{7}
Add \frac{3}{7} to both sides of the equation.