Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

7\left(x^{2}-8x\right)
Factor out 7.
x\left(x-8\right)
Consider x^{2}-8x. Factor out x.
7x\left(x-8\right)
Rewrite the complete factored expression.
7x^{2}-56x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-56\right)±\sqrt{\left(-56\right)^{2}}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-56\right)±56}{2\times 7}
Take the square root of \left(-56\right)^{2}.
x=\frac{56±56}{2\times 7}
The opposite of -56 is 56.
x=\frac{56±56}{14}
Multiply 2 times 7.
x=\frac{112}{14}
Now solve the equation x=\frac{56±56}{14} when ± is plus. Add 56 to 56.
x=8
Divide 112 by 14.
x=\frac{0}{14}
Now solve the equation x=\frac{56±56}{14} when ± is minus. Subtract 56 from 56.
x=0
Divide 0 by 14.
7x^{2}-56x=7\left(x-8\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 8 for x_{1} and 0 for x_{2}.