Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}-3x-3-5x-1
Combine 7x^{2} and x^{2} to get 8x^{2}.
8x^{2}-8x-3-1
Combine -3x and -5x to get -8x.
8x^{2}-8x-4
Subtract 1 from -3 to get -4.
factor(8x^{2}-3x-3-5x-1)
Combine 7x^{2} and x^{2} to get 8x^{2}.
factor(8x^{2}-8x-3-1)
Combine -3x and -5x to get -8x.
factor(8x^{2}-8x-4)
Subtract 1 from -3 to get -4.
8x^{2}-8x-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 8\left(-4\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 8\left(-4\right)}}{2\times 8}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-32\left(-4\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-8\right)±\sqrt{64+128}}{2\times 8}
Multiply -32 times -4.
x=\frac{-\left(-8\right)±\sqrt{192}}{2\times 8}
Add 64 to 128.
x=\frac{-\left(-8\right)±8\sqrt{3}}{2\times 8}
Take the square root of 192.
x=\frac{8±8\sqrt{3}}{2\times 8}
The opposite of -8 is 8.
x=\frac{8±8\sqrt{3}}{16}
Multiply 2 times 8.
x=\frac{8\sqrt{3}+8}{16}
Now solve the equation x=\frac{8±8\sqrt{3}}{16} when ± is plus. Add 8 to 8\sqrt{3}.
x=\frac{\sqrt{3}+1}{2}
Divide 8+8\sqrt{3} by 16.
x=\frac{8-8\sqrt{3}}{16}
Now solve the equation x=\frac{8±8\sqrt{3}}{16} when ± is minus. Subtract 8\sqrt{3} from 8.
x=\frac{1-\sqrt{3}}{2}
Divide 8-8\sqrt{3} by 16.
8x^{2}-8x-4=8\left(x-\frac{\sqrt{3}+1}{2}\right)\left(x-\frac{1-\sqrt{3}}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1+\sqrt{3}}{2} for x_{1} and \frac{1-\sqrt{3}}{2} for x_{2}.