Solve for x
x=\frac{3\sqrt{21}}{14}+1\approx 1.981980506
x=-\frac{3\sqrt{21}}{14}+1\approx 0.018019494
Graph
Share
Copied to clipboard
7x^{2}-14x+\frac{1}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 7\times \frac{1}{4}}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -14 for b, and \frac{1}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 7\times \frac{1}{4}}}{2\times 7}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-28\times \frac{1}{4}}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-14\right)±\sqrt{196-7}}{2\times 7}
Multiply -28 times \frac{1}{4}.
x=\frac{-\left(-14\right)±\sqrt{189}}{2\times 7}
Add 196 to -7.
x=\frac{-\left(-14\right)±3\sqrt{21}}{2\times 7}
Take the square root of 189.
x=\frac{14±3\sqrt{21}}{2\times 7}
The opposite of -14 is 14.
x=\frac{14±3\sqrt{21}}{14}
Multiply 2 times 7.
x=\frac{3\sqrt{21}+14}{14}
Now solve the equation x=\frac{14±3\sqrt{21}}{14} when ± is plus. Add 14 to 3\sqrt{21}.
x=\frac{3\sqrt{21}}{14}+1
Divide 14+3\sqrt{21} by 14.
x=\frac{14-3\sqrt{21}}{14}
Now solve the equation x=\frac{14±3\sqrt{21}}{14} when ± is minus. Subtract 3\sqrt{21} from 14.
x=-\frac{3\sqrt{21}}{14}+1
Divide 14-3\sqrt{21} by 14.
x=\frac{3\sqrt{21}}{14}+1 x=-\frac{3\sqrt{21}}{14}+1
The equation is now solved.
7x^{2}-14x+\frac{1}{4}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}-14x+\frac{1}{4}-\frac{1}{4}=-\frac{1}{4}
Subtract \frac{1}{4} from both sides of the equation.
7x^{2}-14x=-\frac{1}{4}
Subtracting \frac{1}{4} from itself leaves 0.
\frac{7x^{2}-14x}{7}=-\frac{\frac{1}{4}}{7}
Divide both sides by 7.
x^{2}+\left(-\frac{14}{7}\right)x=-\frac{\frac{1}{4}}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-2x=-\frac{\frac{1}{4}}{7}
Divide -14 by 7.
x^{2}-2x=-\frac{1}{28}
Divide -\frac{1}{4} by 7.
x^{2}-2x+1=-\frac{1}{28}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{27}{28}
Add -\frac{1}{28} to 1.
\left(x-1\right)^{2}=\frac{27}{28}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{27}{28}}
Take the square root of both sides of the equation.
x-1=\frac{3\sqrt{21}}{14} x-1=-\frac{3\sqrt{21}}{14}
Simplify.
x=\frac{3\sqrt{21}}{14}+1 x=-\frac{3\sqrt{21}}{14}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}