Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

7\left(x^{2}-2x\right)
Factor out 7.
x\left(x-2\right)
Consider x^{2}-2x. Factor out x.
7x\left(x-2\right)
Rewrite the complete factored expression.
7x^{2}-14x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-14\right)±14}{2\times 7}
Take the square root of \left(-14\right)^{2}.
x=\frac{14±14}{2\times 7}
The opposite of -14 is 14.
x=\frac{14±14}{14}
Multiply 2 times 7.
x=\frac{28}{14}
Now solve the equation x=\frac{14±14}{14} when ± is plus. Add 14 to 14.
x=2
Divide 28 by 14.
x=\frac{0}{14}
Now solve the equation x=\frac{14±14}{14} when ± is minus. Subtract 14 from 14.
x=0
Divide 0 by 14.
7x^{2}-14x=7\left(x-2\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and 0 for x_{2}.