Solve for x
x=-\frac{4}{7}\approx -0.571428571
x=3
Graph
Share
Copied to clipboard
7x^{2}-10x-8-7x=4
Subtract 7x from both sides.
7x^{2}-17x-8=4
Combine -10x and -7x to get -17x.
7x^{2}-17x-8-4=0
Subtract 4 from both sides.
7x^{2}-17x-12=0
Subtract 4 from -8 to get -12.
a+b=-17 ab=7\left(-12\right)=-84
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 7x^{2}+ax+bx-12. To find a and b, set up a system to be solved.
1,-84 2,-42 3,-28 4,-21 6,-14 7,-12
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -84.
1-84=-83 2-42=-40 3-28=-25 4-21=-17 6-14=-8 7-12=-5
Calculate the sum for each pair.
a=-21 b=4
The solution is the pair that gives sum -17.
\left(7x^{2}-21x\right)+\left(4x-12\right)
Rewrite 7x^{2}-17x-12 as \left(7x^{2}-21x\right)+\left(4x-12\right).
7x\left(x-3\right)+4\left(x-3\right)
Factor out 7x in the first and 4 in the second group.
\left(x-3\right)\left(7x+4\right)
Factor out common term x-3 by using distributive property.
x=3 x=-\frac{4}{7}
To find equation solutions, solve x-3=0 and 7x+4=0.
7x^{2}-10x-8-7x=4
Subtract 7x from both sides.
7x^{2}-17x-8=4
Combine -10x and -7x to get -17x.
7x^{2}-17x-8-4=0
Subtract 4 from both sides.
7x^{2}-17x-12=0
Subtract 4 from -8 to get -12.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 7\left(-12\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -17 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 7\left(-12\right)}}{2\times 7}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289-28\left(-12\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-17\right)±\sqrt{289+336}}{2\times 7}
Multiply -28 times -12.
x=\frac{-\left(-17\right)±\sqrt{625}}{2\times 7}
Add 289 to 336.
x=\frac{-\left(-17\right)±25}{2\times 7}
Take the square root of 625.
x=\frac{17±25}{2\times 7}
The opposite of -17 is 17.
x=\frac{17±25}{14}
Multiply 2 times 7.
x=\frac{42}{14}
Now solve the equation x=\frac{17±25}{14} when ± is plus. Add 17 to 25.
x=3
Divide 42 by 14.
x=-\frac{8}{14}
Now solve the equation x=\frac{17±25}{14} when ± is minus. Subtract 25 from 17.
x=-\frac{4}{7}
Reduce the fraction \frac{-8}{14} to lowest terms by extracting and canceling out 2.
x=3 x=-\frac{4}{7}
The equation is now solved.
7x^{2}-10x-8-7x=4
Subtract 7x from both sides.
7x^{2}-17x-8=4
Combine -10x and -7x to get -17x.
7x^{2}-17x=4+8
Add 8 to both sides.
7x^{2}-17x=12
Add 4 and 8 to get 12.
\frac{7x^{2}-17x}{7}=\frac{12}{7}
Divide both sides by 7.
x^{2}-\frac{17}{7}x=\frac{12}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{17}{7}x+\left(-\frac{17}{14}\right)^{2}=\frac{12}{7}+\left(-\frac{17}{14}\right)^{2}
Divide -\frac{17}{7}, the coefficient of the x term, by 2 to get -\frac{17}{14}. Then add the square of -\frac{17}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{7}x+\frac{289}{196}=\frac{12}{7}+\frac{289}{196}
Square -\frac{17}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{17}{7}x+\frac{289}{196}=\frac{625}{196}
Add \frac{12}{7} to \frac{289}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{17}{14}\right)^{2}=\frac{625}{196}
Factor x^{2}-\frac{17}{7}x+\frac{289}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{14}\right)^{2}}=\sqrt{\frac{625}{196}}
Take the square root of both sides of the equation.
x-\frac{17}{14}=\frac{25}{14} x-\frac{17}{14}=-\frac{25}{14}
Simplify.
x=3 x=-\frac{4}{7}
Add \frac{17}{14} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}