Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

224x^{2}=4
Multiply 7 and 32 to get 224.
x^{2}=\frac{4}{224}
Divide both sides by 224.
x^{2}=\frac{1}{56}
Reduce the fraction \frac{4}{224} to lowest terms by extracting and canceling out 4.
x=\frac{\sqrt{14}}{28} x=-\frac{\sqrt{14}}{28}
Take the square root of both sides of the equation.
224x^{2}=4
Multiply 7 and 32 to get 224.
224x^{2}-4=0
Subtract 4 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 224\left(-4\right)}}{2\times 224}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 224 for a, 0 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 224\left(-4\right)}}{2\times 224}
Square 0.
x=\frac{0±\sqrt{-896\left(-4\right)}}{2\times 224}
Multiply -4 times 224.
x=\frac{0±\sqrt{3584}}{2\times 224}
Multiply -896 times -4.
x=\frac{0±16\sqrt{14}}{2\times 224}
Take the square root of 3584.
x=\frac{0±16\sqrt{14}}{448}
Multiply 2 times 224.
x=\frac{\sqrt{14}}{28}
Now solve the equation x=\frac{0±16\sqrt{14}}{448} when ± is plus.
x=-\frac{\sqrt{14}}{28}
Now solve the equation x=\frac{0±16\sqrt{14}}{448} when ± is minus.
x=\frac{\sqrt{14}}{28} x=-\frac{\sqrt{14}}{28}
The equation is now solved.