Solve for x (complex solution)
x=\frac{11+\sqrt{159}i}{14}\approx 0.785714286+0.900680015i
x=\frac{-\sqrt{159}i+11}{14}\approx 0.785714286-0.900680015i
Graph
Share
Copied to clipboard
7x^{2}-11x=-10
Subtract 11x from both sides.
7x^{2}-11x+10=0
Add 10 to both sides.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 7\times 10}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -11 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 7\times 10}}{2\times 7}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-28\times 10}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-11\right)±\sqrt{121-280}}{2\times 7}
Multiply -28 times 10.
x=\frac{-\left(-11\right)±\sqrt{-159}}{2\times 7}
Add 121 to -280.
x=\frac{-\left(-11\right)±\sqrt{159}i}{2\times 7}
Take the square root of -159.
x=\frac{11±\sqrt{159}i}{2\times 7}
The opposite of -11 is 11.
x=\frac{11±\sqrt{159}i}{14}
Multiply 2 times 7.
x=\frac{11+\sqrt{159}i}{14}
Now solve the equation x=\frac{11±\sqrt{159}i}{14} when ± is plus. Add 11 to i\sqrt{159}.
x=\frac{-\sqrt{159}i+11}{14}
Now solve the equation x=\frac{11±\sqrt{159}i}{14} when ± is minus. Subtract i\sqrt{159} from 11.
x=\frac{11+\sqrt{159}i}{14} x=\frac{-\sqrt{159}i+11}{14}
The equation is now solved.
7x^{2}-11x=-10
Subtract 11x from both sides.
\frac{7x^{2}-11x}{7}=-\frac{10}{7}
Divide both sides by 7.
x^{2}-\frac{11}{7}x=-\frac{10}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{11}{7}x+\left(-\frac{11}{14}\right)^{2}=-\frac{10}{7}+\left(-\frac{11}{14}\right)^{2}
Divide -\frac{11}{7}, the coefficient of the x term, by 2 to get -\frac{11}{14}. Then add the square of -\frac{11}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{7}x+\frac{121}{196}=-\frac{10}{7}+\frac{121}{196}
Square -\frac{11}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{7}x+\frac{121}{196}=-\frac{159}{196}
Add -\frac{10}{7} to \frac{121}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{14}\right)^{2}=-\frac{159}{196}
Factor x^{2}-\frac{11}{7}x+\frac{121}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{14}\right)^{2}}=\sqrt{-\frac{159}{196}}
Take the square root of both sides of the equation.
x-\frac{11}{14}=\frac{\sqrt{159}i}{14} x-\frac{11}{14}=-\frac{\sqrt{159}i}{14}
Simplify.
x=\frac{11+\sqrt{159}i}{14} x=\frac{-\sqrt{159}i+11}{14}
Add \frac{11}{14} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}