Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}-11x=-10
Subtract 11x from both sides.
7x^{2}-11x+10=0
Add 10 to both sides.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 7\times 10}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -11 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 7\times 10}}{2\times 7}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-28\times 10}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-11\right)±\sqrt{121-280}}{2\times 7}
Multiply -28 times 10.
x=\frac{-\left(-11\right)±\sqrt{-159}}{2\times 7}
Add 121 to -280.
x=\frac{-\left(-11\right)±\sqrt{159}i}{2\times 7}
Take the square root of -159.
x=\frac{11±\sqrt{159}i}{2\times 7}
The opposite of -11 is 11.
x=\frac{11±\sqrt{159}i}{14}
Multiply 2 times 7.
x=\frac{11+\sqrt{159}i}{14}
Now solve the equation x=\frac{11±\sqrt{159}i}{14} when ± is plus. Add 11 to i\sqrt{159}.
x=\frac{-\sqrt{159}i+11}{14}
Now solve the equation x=\frac{11±\sqrt{159}i}{14} when ± is minus. Subtract i\sqrt{159} from 11.
x=\frac{11+\sqrt{159}i}{14} x=\frac{-\sqrt{159}i+11}{14}
The equation is now solved.
7x^{2}-11x=-10
Subtract 11x from both sides.
\frac{7x^{2}-11x}{7}=-\frac{10}{7}
Divide both sides by 7.
x^{2}-\frac{11}{7}x=-\frac{10}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{11}{7}x+\left(-\frac{11}{14}\right)^{2}=-\frac{10}{7}+\left(-\frac{11}{14}\right)^{2}
Divide -\frac{11}{7}, the coefficient of the x term, by 2 to get -\frac{11}{14}. Then add the square of -\frac{11}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{7}x+\frac{121}{196}=-\frac{10}{7}+\frac{121}{196}
Square -\frac{11}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{7}x+\frac{121}{196}=-\frac{159}{196}
Add -\frac{10}{7} to \frac{121}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{14}\right)^{2}=-\frac{159}{196}
Factor x^{2}-\frac{11}{7}x+\frac{121}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{14}\right)^{2}}=\sqrt{-\frac{159}{196}}
Take the square root of both sides of the equation.
x-\frac{11}{14}=\frac{\sqrt{159}i}{14} x-\frac{11}{14}=-\frac{\sqrt{159}i}{14}
Simplify.
x=\frac{11+\sqrt{159}i}{14} x=\frac{-\sqrt{159}i+11}{14}
Add \frac{11}{14} to both sides of the equation.