Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+8x-4+11
Combine 7x^{2} and -5x^{2} to get 2x^{2}.
2x^{2}+8x+7
Add -4 and 11 to get 7.
factor(2x^{2}+8x-4+11)
Combine 7x^{2} and -5x^{2} to get 2x^{2}.
factor(2x^{2}+8x+7)
Add -4 and 11 to get 7.
2x^{2}+8x+7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\times 2\times 7}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\times 2\times 7}}{2\times 2}
Square 8.
x=\frac{-8±\sqrt{64-8\times 7}}{2\times 2}
Multiply -4 times 2.
x=\frac{-8±\sqrt{64-56}}{2\times 2}
Multiply -8 times 7.
x=\frac{-8±\sqrt{8}}{2\times 2}
Add 64 to -56.
x=\frac{-8±2\sqrt{2}}{2\times 2}
Take the square root of 8.
x=\frac{-8±2\sqrt{2}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{2}-8}{4}
Now solve the equation x=\frac{-8±2\sqrt{2}}{4} when ± is plus. Add -8 to 2\sqrt{2}.
x=\frac{\sqrt{2}}{2}-2
Divide 2\sqrt{2}-8 by 4.
x=\frac{-2\sqrt{2}-8}{4}
Now solve the equation x=\frac{-8±2\sqrt{2}}{4} when ± is minus. Subtract 2\sqrt{2} from -8.
x=-\frac{\sqrt{2}}{2}-2
Divide -8-2\sqrt{2} by 4.
2x^{2}+8x+7=2\left(x-\left(\frac{\sqrt{2}}{2}-2\right)\right)\left(x-\left(-\frac{\sqrt{2}}{2}-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -2+\frac{\sqrt{2}}{2} for x_{1} and -2-\frac{\sqrt{2}}{2} for x_{2}.