Solve for x
x = \frac{\sqrt{142} - 3}{7} \approx 1.273767898
x=\frac{-\sqrt{142}-3}{7}\approx -2.130910755
Graph
Share
Copied to clipboard
7x^{2}+6x+5=24
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
7x^{2}+6x+5-24=24-24
Subtract 24 from both sides of the equation.
7x^{2}+6x+5-24=0
Subtracting 24 from itself leaves 0.
7x^{2}+6x-19=0
Subtract 24 from 5.
x=\frac{-6±\sqrt{6^{2}-4\times 7\left(-19\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 6 for b, and -19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 7\left(-19\right)}}{2\times 7}
Square 6.
x=\frac{-6±\sqrt{36-28\left(-19\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-6±\sqrt{36+532}}{2\times 7}
Multiply -28 times -19.
x=\frac{-6±\sqrt{568}}{2\times 7}
Add 36 to 532.
x=\frac{-6±2\sqrt{142}}{2\times 7}
Take the square root of 568.
x=\frac{-6±2\sqrt{142}}{14}
Multiply 2 times 7.
x=\frac{2\sqrt{142}-6}{14}
Now solve the equation x=\frac{-6±2\sqrt{142}}{14} when ± is plus. Add -6 to 2\sqrt{142}.
x=\frac{\sqrt{142}-3}{7}
Divide -6+2\sqrt{142} by 14.
x=\frac{-2\sqrt{142}-6}{14}
Now solve the equation x=\frac{-6±2\sqrt{142}}{14} when ± is minus. Subtract 2\sqrt{142} from -6.
x=\frac{-\sqrt{142}-3}{7}
Divide -6-2\sqrt{142} by 14.
x=\frac{\sqrt{142}-3}{7} x=\frac{-\sqrt{142}-3}{7}
The equation is now solved.
7x^{2}+6x+5=24
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}+6x+5-5=24-5
Subtract 5 from both sides of the equation.
7x^{2}+6x=24-5
Subtracting 5 from itself leaves 0.
7x^{2}+6x=19
Subtract 5 from 24.
\frac{7x^{2}+6x}{7}=\frac{19}{7}
Divide both sides by 7.
x^{2}+\frac{6}{7}x=\frac{19}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}+\frac{6}{7}x+\left(\frac{3}{7}\right)^{2}=\frac{19}{7}+\left(\frac{3}{7}\right)^{2}
Divide \frac{6}{7}, the coefficient of the x term, by 2 to get \frac{3}{7}. Then add the square of \frac{3}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{6}{7}x+\frac{9}{49}=\frac{19}{7}+\frac{9}{49}
Square \frac{3}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{6}{7}x+\frac{9}{49}=\frac{142}{49}
Add \frac{19}{7} to \frac{9}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{7}\right)^{2}=\frac{142}{49}
Factor x^{2}+\frac{6}{7}x+\frac{9}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{7}\right)^{2}}=\sqrt{\frac{142}{49}}
Take the square root of both sides of the equation.
x+\frac{3}{7}=\frac{\sqrt{142}}{7} x+\frac{3}{7}=-\frac{\sqrt{142}}{7}
Simplify.
x=\frac{\sqrt{142}-3}{7} x=\frac{-\sqrt{142}-3}{7}
Subtract \frac{3}{7} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}