Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}=-33-6
Subtract 6 from both sides.
7x^{2}=-39
Subtract 6 from -33 to get -39.
x^{2}=-\frac{39}{7}
Divide both sides by 7.
x=\frac{\sqrt{273}i}{7} x=-\frac{\sqrt{273}i}{7}
The equation is now solved.
7x^{2}+6+33=0
Add 33 to both sides.
7x^{2}+39=0
Add 6 and 33 to get 39.
x=\frac{0±\sqrt{0^{2}-4\times 7\times 39}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 0 for b, and 39 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 7\times 39}}{2\times 7}
Square 0.
x=\frac{0±\sqrt{-28\times 39}}{2\times 7}
Multiply -4 times 7.
x=\frac{0±\sqrt{-1092}}{2\times 7}
Multiply -28 times 39.
x=\frac{0±2\sqrt{273}i}{2\times 7}
Take the square root of -1092.
x=\frac{0±2\sqrt{273}i}{14}
Multiply 2 times 7.
x=\frac{\sqrt{273}i}{7}
Now solve the equation x=\frac{0±2\sqrt{273}i}{14} when ± is plus.
x=-\frac{\sqrt{273}i}{7}
Now solve the equation x=\frac{0±2\sqrt{273}i}{14} when ± is minus.
x=\frac{\sqrt{273}i}{7} x=-\frac{\sqrt{273}i}{7}
The equation is now solved.