Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}+29=0
Subtract 24 from 53 to get 29.
7x^{2}=-29
Subtract 29 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-\frac{29}{7}
Divide both sides by 7.
x=\frac{\sqrt{203}i}{7} x=-\frac{\sqrt{203}i}{7}
The equation is now solved.
7x^{2}+29=0
Subtract 24 from 53 to get 29.
x=\frac{0±\sqrt{0^{2}-4\times 7\times 29}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 0 for b, and 29 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 7\times 29}}{2\times 7}
Square 0.
x=\frac{0±\sqrt{-28\times 29}}{2\times 7}
Multiply -4 times 7.
x=\frac{0±\sqrt{-812}}{2\times 7}
Multiply -28 times 29.
x=\frac{0±2\sqrt{203}i}{2\times 7}
Take the square root of -812.
x=\frac{0±2\sqrt{203}i}{14}
Multiply 2 times 7.
x=\frac{\sqrt{203}i}{7}
Now solve the equation x=\frac{0±2\sqrt{203}i}{14} when ± is plus.
x=-\frac{\sqrt{203}i}{7}
Now solve the equation x=\frac{0±2\sqrt{203}i}{14} when ± is minus.
x=\frac{\sqrt{203}i}{7} x=-\frac{\sqrt{203}i}{7}
The equation is now solved.