Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x^{2}=55
Combine 7x^{2} and 5x^{2} to get 12x^{2}.
x^{2}=\frac{55}{12}
Divide both sides by 12.
x=\frac{\sqrt{165}}{6} x=-\frac{\sqrt{165}}{6}
Take the square root of both sides of the equation.
12x^{2}=55
Combine 7x^{2} and 5x^{2} to get 12x^{2}.
12x^{2}-55=0
Subtract 55 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 12\left(-55\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 0 for b, and -55 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 12\left(-55\right)}}{2\times 12}
Square 0.
x=\frac{0±\sqrt{-48\left(-55\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{0±\sqrt{2640}}{2\times 12}
Multiply -48 times -55.
x=\frac{0±4\sqrt{165}}{2\times 12}
Take the square root of 2640.
x=\frac{0±4\sqrt{165}}{24}
Multiply 2 times 12.
x=\frac{\sqrt{165}}{6}
Now solve the equation x=\frac{0±4\sqrt{165}}{24} when ± is plus.
x=-\frac{\sqrt{165}}{6}
Now solve the equation x=\frac{0±4\sqrt{165}}{24} when ± is minus.
x=\frac{\sqrt{165}}{6} x=-\frac{\sqrt{165}}{6}
The equation is now solved.