Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}+35x-14=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-35±\sqrt{35^{2}-4\times 7\left(-14\right)}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-35±\sqrt{1225-4\times 7\left(-14\right)}}{2\times 7}
Square 35.
x=\frac{-35±\sqrt{1225-28\left(-14\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-35±\sqrt{1225+392}}{2\times 7}
Multiply -28 times -14.
x=\frac{-35±\sqrt{1617}}{2\times 7}
Add 1225 to 392.
x=\frac{-35±7\sqrt{33}}{2\times 7}
Take the square root of 1617.
x=\frac{-35±7\sqrt{33}}{14}
Multiply 2 times 7.
x=\frac{7\sqrt{33}-35}{14}
Now solve the equation x=\frac{-35±7\sqrt{33}}{14} when ± is plus. Add -35 to 7\sqrt{33}.
x=\frac{\sqrt{33}-5}{2}
Divide -35+7\sqrt{33} by 14.
x=\frac{-7\sqrt{33}-35}{14}
Now solve the equation x=\frac{-35±7\sqrt{33}}{14} when ± is minus. Subtract 7\sqrt{33} from -35.
x=\frac{-\sqrt{33}-5}{2}
Divide -35-7\sqrt{33} by 14.
7x^{2}+35x-14=7\left(x-\frac{\sqrt{33}-5}{2}\right)\left(x-\frac{-\sqrt{33}-5}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5+\sqrt{33}}{2} for x_{1} and \frac{-5-\sqrt{33}}{2} for x_{2}.
x ^ 2 +5x -2 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 7
r + s = -5 rs = -2
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{5}{2} - u s = -\frac{5}{2} + u
Two numbers r and s sum up to -5 exactly when the average of the two numbers is \frac{1}{2}*-5 = -\frac{5}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{5}{2} - u) (-\frac{5}{2} + u) = -2
To solve for unknown quantity u, substitute these in the product equation rs = -2
\frac{25}{4} - u^2 = -2
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -2-\frac{25}{4} = -\frac{33}{4}
Simplify the expression by subtracting \frac{25}{4} on both sides
u^2 = \frac{33}{4} u = \pm\sqrt{\frac{33}{4}} = \pm \frac{\sqrt{33}}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{5}{2} - \frac{\sqrt{33}}{2} = -5.372 s = -\frac{5}{2} + \frac{\sqrt{33}}{2} = 0.372
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.