Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}=16-3
Subtract 3 from both sides.
7x^{2}=13
Subtract 3 from 16 to get 13.
x^{2}=\frac{13}{7}
Divide both sides by 7.
x=\frac{\sqrt{91}}{7} x=-\frac{\sqrt{91}}{7}
Take the square root of both sides of the equation.
7x^{2}+3-16=0
Subtract 16 from both sides.
7x^{2}-13=0
Subtract 16 from 3 to get -13.
x=\frac{0±\sqrt{0^{2}-4\times 7\left(-13\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 0 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 7\left(-13\right)}}{2\times 7}
Square 0.
x=\frac{0±\sqrt{-28\left(-13\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{0±\sqrt{364}}{2\times 7}
Multiply -28 times -13.
x=\frac{0±2\sqrt{91}}{2\times 7}
Take the square root of 364.
x=\frac{0±2\sqrt{91}}{14}
Multiply 2 times 7.
x=\frac{\sqrt{91}}{7}
Now solve the equation x=\frac{0±2\sqrt{91}}{14} when ± is plus.
x=-\frac{\sqrt{91}}{7}
Now solve the equation x=\frac{0±2\sqrt{91}}{14} when ± is minus.
x=\frac{\sqrt{91}}{7} x=-\frac{\sqrt{91}}{7}
The equation is now solved.