Solve for x
x = -\frac{2575}{7} = -367\frac{6}{7} \approx -367.857142857
x=24
Graph
Share
Copied to clipboard
a+b=2407 ab=7\left(-61800\right)=-432600
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 7x^{2}+ax+bx-61800. To find a and b, set up a system to be solved.
-1,432600 -2,216300 -3,144200 -4,108150 -5,86520 -6,72100 -7,61800 -8,54075 -10,43260 -12,36050 -14,30900 -15,28840 -20,21630 -21,20600 -24,18025 -25,17304 -28,15450 -30,14420 -35,12360 -40,10815 -42,10300 -50,8652 -56,7725 -60,7210 -70,6180 -75,5768 -84,5150 -100,4326 -103,4200 -105,4120 -120,3605 -140,3090 -150,2884 -168,2575 -175,2472 -200,2163 -206,2100 -210,2060 -280,1545 -300,1442 -309,1400 -350,1236 -412,1050 -420,1030 -515,840 -525,824 -600,721 -618,700
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -432600.
-1+432600=432599 -2+216300=216298 -3+144200=144197 -4+108150=108146 -5+86520=86515 -6+72100=72094 -7+61800=61793 -8+54075=54067 -10+43260=43250 -12+36050=36038 -14+30900=30886 -15+28840=28825 -20+21630=21610 -21+20600=20579 -24+18025=18001 -25+17304=17279 -28+15450=15422 -30+14420=14390 -35+12360=12325 -40+10815=10775 -42+10300=10258 -50+8652=8602 -56+7725=7669 -60+7210=7150 -70+6180=6110 -75+5768=5693 -84+5150=5066 -100+4326=4226 -103+4200=4097 -105+4120=4015 -120+3605=3485 -140+3090=2950 -150+2884=2734 -168+2575=2407 -175+2472=2297 -200+2163=1963 -206+2100=1894 -210+2060=1850 -280+1545=1265 -300+1442=1142 -309+1400=1091 -350+1236=886 -412+1050=638 -420+1030=610 -515+840=325 -525+824=299 -600+721=121 -618+700=82
Calculate the sum for each pair.
a=-168 b=2575
The solution is the pair that gives sum 2407.
\left(7x^{2}-168x\right)+\left(2575x-61800\right)
Rewrite 7x^{2}+2407x-61800 as \left(7x^{2}-168x\right)+\left(2575x-61800\right).
7x\left(x-24\right)+2575\left(x-24\right)
Factor out 7x in the first and 2575 in the second group.
\left(x-24\right)\left(7x+2575\right)
Factor out common term x-24 by using distributive property.
x=24 x=-\frac{2575}{7}
To find equation solutions, solve x-24=0 and 7x+2575=0.
7x^{2}+2407x-61800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2407±\sqrt{2407^{2}-4\times 7\left(-61800\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 2407 for b, and -61800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2407±\sqrt{5793649-4\times 7\left(-61800\right)}}{2\times 7}
Square 2407.
x=\frac{-2407±\sqrt{5793649-28\left(-61800\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-2407±\sqrt{5793649+1730400}}{2\times 7}
Multiply -28 times -61800.
x=\frac{-2407±\sqrt{7524049}}{2\times 7}
Add 5793649 to 1730400.
x=\frac{-2407±2743}{2\times 7}
Take the square root of 7524049.
x=\frac{-2407±2743}{14}
Multiply 2 times 7.
x=\frac{336}{14}
Now solve the equation x=\frac{-2407±2743}{14} when ± is plus. Add -2407 to 2743.
x=24
Divide 336 by 14.
x=-\frac{5150}{14}
Now solve the equation x=\frac{-2407±2743}{14} when ± is minus. Subtract 2743 from -2407.
x=-\frac{2575}{7}
Reduce the fraction \frac{-5150}{14} to lowest terms by extracting and canceling out 2.
x=24 x=-\frac{2575}{7}
The equation is now solved.
7x^{2}+2407x-61800=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}+2407x-61800-\left(-61800\right)=-\left(-61800\right)
Add 61800 to both sides of the equation.
7x^{2}+2407x=-\left(-61800\right)
Subtracting -61800 from itself leaves 0.
7x^{2}+2407x=61800
Subtract -61800 from 0.
\frac{7x^{2}+2407x}{7}=\frac{61800}{7}
Divide both sides by 7.
x^{2}+\frac{2407}{7}x=\frac{61800}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}+\frac{2407}{7}x+\left(\frac{2407}{14}\right)^{2}=\frac{61800}{7}+\left(\frac{2407}{14}\right)^{2}
Divide \frac{2407}{7}, the coefficient of the x term, by 2 to get \frac{2407}{14}. Then add the square of \frac{2407}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2407}{7}x+\frac{5793649}{196}=\frac{61800}{7}+\frac{5793649}{196}
Square \frac{2407}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2407}{7}x+\frac{5793649}{196}=\frac{7524049}{196}
Add \frac{61800}{7} to \frac{5793649}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2407}{14}\right)^{2}=\frac{7524049}{196}
Factor x^{2}+\frac{2407}{7}x+\frac{5793649}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2407}{14}\right)^{2}}=\sqrt{\frac{7524049}{196}}
Take the square root of both sides of the equation.
x+\frac{2407}{14}=\frac{2743}{14} x+\frac{2407}{14}=-\frac{2743}{14}
Simplify.
x=24 x=-\frac{2575}{7}
Subtract \frac{2407}{14} from both sides of the equation.
x ^ 2 +\frac{2407}{7}x -\frac{61800}{7} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 7
r + s = -\frac{2407}{7} rs = -\frac{61800}{7}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{2407}{14} - u s = -\frac{2407}{14} + u
Two numbers r and s sum up to -\frac{2407}{7} exactly when the average of the two numbers is \frac{1}{2}*-\frac{2407}{7} = -\frac{2407}{14}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{2407}{14} - u) (-\frac{2407}{14} + u) = -\frac{61800}{7}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{61800}{7}
\frac{5793649}{196} - u^2 = -\frac{61800}{7}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{61800}{7}-\frac{5793649}{196} = -\frac{7524049}{196}
Simplify the expression by subtracting \frac{5793649}{196} on both sides
u^2 = \frac{7524049}{196} u = \pm\sqrt{\frac{7524049}{196}} = \pm \frac{2743}{14}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{2407}{14} - \frac{2743}{14} = -367.857 s = -\frac{2407}{14} + \frac{2743}{14} = 24
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}