Solve for x (complex solution)
x=\frac{2\sqrt{14}i}{7}-1\approx -1+1.069044968i
x=-\frac{2\sqrt{14}i}{7}-1\approx -1-1.069044968i
Graph
Share
Copied to clipboard
7x^{2}+14x+24=9
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
7x^{2}+14x+24-9=9-9
Subtract 9 from both sides of the equation.
7x^{2}+14x+24-9=0
Subtracting 9 from itself leaves 0.
7x^{2}+14x+15=0
Subtract 9 from 24.
x=\frac{-14±\sqrt{14^{2}-4\times 7\times 15}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 14 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\times 7\times 15}}{2\times 7}
Square 14.
x=\frac{-14±\sqrt{196-28\times 15}}{2\times 7}
Multiply -4 times 7.
x=\frac{-14±\sqrt{196-420}}{2\times 7}
Multiply -28 times 15.
x=\frac{-14±\sqrt{-224}}{2\times 7}
Add 196 to -420.
x=\frac{-14±4\sqrt{14}i}{2\times 7}
Take the square root of -224.
x=\frac{-14±4\sqrt{14}i}{14}
Multiply 2 times 7.
x=\frac{-14+4\sqrt{14}i}{14}
Now solve the equation x=\frac{-14±4\sqrt{14}i}{14} when ± is plus. Add -14 to 4i\sqrt{14}.
x=\frac{2\sqrt{14}i}{7}-1
Divide -14+4i\sqrt{14} by 14.
x=\frac{-4\sqrt{14}i-14}{14}
Now solve the equation x=\frac{-14±4\sqrt{14}i}{14} when ± is minus. Subtract 4i\sqrt{14} from -14.
x=-\frac{2\sqrt{14}i}{7}-1
Divide -14-4i\sqrt{14} by 14.
x=\frac{2\sqrt{14}i}{7}-1 x=-\frac{2\sqrt{14}i}{7}-1
The equation is now solved.
7x^{2}+14x+24=9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}+14x+24-24=9-24
Subtract 24 from both sides of the equation.
7x^{2}+14x=9-24
Subtracting 24 from itself leaves 0.
7x^{2}+14x=-15
Subtract 24 from 9.
\frac{7x^{2}+14x}{7}=-\frac{15}{7}
Divide both sides by 7.
x^{2}+\frac{14}{7}x=-\frac{15}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}+2x=-\frac{15}{7}
Divide 14 by 7.
x^{2}+2x+1^{2}=-\frac{15}{7}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=-\frac{15}{7}+1
Square 1.
x^{2}+2x+1=-\frac{8}{7}
Add -\frac{15}{7} to 1.
\left(x+1\right)^{2}=-\frac{8}{7}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-\frac{8}{7}}
Take the square root of both sides of the equation.
x+1=\frac{2\sqrt{14}i}{7} x+1=-\frac{2\sqrt{14}i}{7}
Simplify.
x=\frac{2\sqrt{14}i}{7}-1 x=-\frac{2\sqrt{14}i}{7}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}