Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}+12+5x=0
Add 5x to both sides.
7x^{2}+5x+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\times 7\times 12}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 5 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 7\times 12}}{2\times 7}
Square 5.
x=\frac{-5±\sqrt{25-28\times 12}}{2\times 7}
Multiply -4 times 7.
x=\frac{-5±\sqrt{25-336}}{2\times 7}
Multiply -28 times 12.
x=\frac{-5±\sqrt{-311}}{2\times 7}
Add 25 to -336.
x=\frac{-5±\sqrt{311}i}{2\times 7}
Take the square root of -311.
x=\frac{-5±\sqrt{311}i}{14}
Multiply 2 times 7.
x=\frac{-5+\sqrt{311}i}{14}
Now solve the equation x=\frac{-5±\sqrt{311}i}{14} when ± is plus. Add -5 to i\sqrt{311}.
x=\frac{-\sqrt{311}i-5}{14}
Now solve the equation x=\frac{-5±\sqrt{311}i}{14} when ± is minus. Subtract i\sqrt{311} from -5.
x=\frac{-5+\sqrt{311}i}{14} x=\frac{-\sqrt{311}i-5}{14}
The equation is now solved.
7x^{2}+12+5x=0
Add 5x to both sides.
7x^{2}+5x=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
\frac{7x^{2}+5x}{7}=-\frac{12}{7}
Divide both sides by 7.
x^{2}+\frac{5}{7}x=-\frac{12}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}+\frac{5}{7}x+\left(\frac{5}{14}\right)^{2}=-\frac{12}{7}+\left(\frac{5}{14}\right)^{2}
Divide \frac{5}{7}, the coefficient of the x term, by 2 to get \frac{5}{14}. Then add the square of \frac{5}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{7}x+\frac{25}{196}=-\frac{12}{7}+\frac{25}{196}
Square \frac{5}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{7}x+\frac{25}{196}=-\frac{311}{196}
Add -\frac{12}{7} to \frac{25}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{14}\right)^{2}=-\frac{311}{196}
Factor x^{2}+\frac{5}{7}x+\frac{25}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{14}\right)^{2}}=\sqrt{-\frac{311}{196}}
Take the square root of both sides of the equation.
x+\frac{5}{14}=\frac{\sqrt{311}i}{14} x+\frac{5}{14}=-\frac{\sqrt{311}i}{14}
Simplify.
x=\frac{-5+\sqrt{311}i}{14} x=\frac{-\sqrt{311}i-5}{14}
Subtract \frac{5}{14} from both sides of the equation.