Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

7\left(x^{10}+8x^{7}y^{6}\right)
Factor out 7.
x^{7}\left(x^{3}+8y^{6}\right)
Consider x^{10}+8x^{7}y^{6}. Factor out x^{7}.
\left(x+2y^{2}\right)\left(x^{2}-2xy^{2}+4y^{4}\right)
Consider x^{3}+8y^{6}. Rewrite x^{3}+8y^{6} as x^{3}+\left(2y^{2}\right)^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
7x^{7}\left(x+2y^{2}\right)\left(x^{2}-2xy^{2}+4y^{4}\right)
Rewrite the complete factored expression.