Solve for x
x = \frac{\sqrt{65} + 7}{8} \approx 1.882782219
x=\frac{7-\sqrt{65}}{8}\approx -0.132782219
Graph
Share
Copied to clipboard
7x-4x^{2}=-1
Subtract 4x^{2} from both sides.
7x-4x^{2}+1=0
Add 1 to both sides.
-4x^{2}+7x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\left(-4\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 7 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-4\right)}}{2\left(-4\right)}
Square 7.
x=\frac{-7±\sqrt{49+16}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-7±\sqrt{65}}{2\left(-4\right)}
Add 49 to 16.
x=\frac{-7±\sqrt{65}}{-8}
Multiply 2 times -4.
x=\frac{\sqrt{65}-7}{-8}
Now solve the equation x=\frac{-7±\sqrt{65}}{-8} when ± is plus. Add -7 to \sqrt{65}.
x=\frac{7-\sqrt{65}}{8}
Divide -7+\sqrt{65} by -8.
x=\frac{-\sqrt{65}-7}{-8}
Now solve the equation x=\frac{-7±\sqrt{65}}{-8} when ± is minus. Subtract \sqrt{65} from -7.
x=\frac{\sqrt{65}+7}{8}
Divide -7-\sqrt{65} by -8.
x=\frac{7-\sqrt{65}}{8} x=\frac{\sqrt{65}+7}{8}
The equation is now solved.
7x-4x^{2}=-1
Subtract 4x^{2} from both sides.
-4x^{2}+7x=-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+7x}{-4}=-\frac{1}{-4}
Divide both sides by -4.
x^{2}+\frac{7}{-4}x=-\frac{1}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{7}{4}x=-\frac{1}{-4}
Divide 7 by -4.
x^{2}-\frac{7}{4}x=\frac{1}{4}
Divide -1 by -4.
x^{2}-\frac{7}{4}x+\left(-\frac{7}{8}\right)^{2}=\frac{1}{4}+\left(-\frac{7}{8}\right)^{2}
Divide -\frac{7}{4}, the coefficient of the x term, by 2 to get -\frac{7}{8}. Then add the square of -\frac{7}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{1}{4}+\frac{49}{64}
Square -\frac{7}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{65}{64}
Add \frac{1}{4} to \frac{49}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{8}\right)^{2}=\frac{65}{64}
Factor x^{2}-\frac{7}{4}x+\frac{49}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{8}\right)^{2}}=\sqrt{\frac{65}{64}}
Take the square root of both sides of the equation.
x-\frac{7}{8}=\frac{\sqrt{65}}{8} x-\frac{7}{8}=-\frac{\sqrt{65}}{8}
Simplify.
x=\frac{\sqrt{65}+7}{8} x=\frac{7-\sqrt{65}}{8}
Add \frac{7}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}