Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x^{2}+7x-144=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 10\left(-144\right)}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{49-4\times 10\left(-144\right)}}{2\times 10}
Square 7.
x=\frac{-7±\sqrt{49-40\left(-144\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-7±\sqrt{49+5760}}{2\times 10}
Multiply -40 times -144.
x=\frac{-7±\sqrt{5809}}{2\times 10}
Add 49 to 5760.
x=\frac{-7±\sqrt{5809}}{20}
Multiply 2 times 10.
x=\frac{\sqrt{5809}-7}{20}
Now solve the equation x=\frac{-7±\sqrt{5809}}{20} when ± is plus. Add -7 to \sqrt{5809}.
x=\frac{-\sqrt{5809}-7}{20}
Now solve the equation x=\frac{-7±\sqrt{5809}}{20} when ± is minus. Subtract \sqrt{5809} from -7.
10x^{2}+7x-144=10\left(x-\frac{\sqrt{5809}-7}{20}\right)\left(x-\frac{-\sqrt{5809}-7}{20}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-7+\sqrt{5809}}{20} for x_{1} and \frac{-7-\sqrt{5809}}{20} for x_{2}.