Solve for x
x=\frac{-6y-82}{35}
Solve for y
y=-\frac{35x}{6}-\frac{41}{3}
Graph
Quiz
Linear Equation
5 problems similar to:
7 x + 1 ( \frac { 6 } { 5 } y + \frac { 2 } { 5 } ) = - 16
Share
Copied to clipboard
7x+\frac{6}{5}y+\frac{2}{5}=-16
Use the distributive property to multiply 1 by \frac{6}{5}y+\frac{2}{5}.
7x+\frac{2}{5}=-16-\frac{6}{5}y
Subtract \frac{6}{5}y from both sides.
7x=-16-\frac{6}{5}y-\frac{2}{5}
Subtract \frac{2}{5} from both sides.
7x=-\frac{82}{5}-\frac{6}{5}y
Subtract \frac{2}{5} from -16 to get -\frac{82}{5}.
7x=\frac{-6y-82}{5}
The equation is in standard form.
\frac{7x}{7}=\frac{-6y-82}{5\times 7}
Divide both sides by 7.
x=\frac{-6y-82}{5\times 7}
Dividing by 7 undoes the multiplication by 7.
x=\frac{-6y-82}{35}
Divide \frac{-82-6y}{5} by 7.
7x+\frac{6}{5}y+\frac{2}{5}=-16
Use the distributive property to multiply 1 by \frac{6}{5}y+\frac{2}{5}.
\frac{6}{5}y+\frac{2}{5}=-16-7x
Subtract 7x from both sides.
\frac{6}{5}y=-16-7x-\frac{2}{5}
Subtract \frac{2}{5} from both sides.
\frac{6}{5}y=-\frac{82}{5}-7x
Subtract \frac{2}{5} from -16 to get -\frac{82}{5}.
\frac{6}{5}y=-7x-\frac{82}{5}
The equation is in standard form.
\frac{\frac{6}{5}y}{\frac{6}{5}}=\frac{-7x-\frac{82}{5}}{\frac{6}{5}}
Divide both sides of the equation by \frac{6}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-7x-\frac{82}{5}}{\frac{6}{5}}
Dividing by \frac{6}{5} undoes the multiplication by \frac{6}{5}.
y=-\frac{35x}{6}-\frac{41}{3}
Divide -\frac{82}{5}-7x by \frac{6}{5} by multiplying -\frac{82}{5}-7x by the reciprocal of \frac{6}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}