Skip to main content
Solve for w
Tick mark Image

Similar Problems from Web Search

Share

7w^{2}=3
Add 3 to both sides. Anything plus zero gives itself.
w^{2}=\frac{3}{7}
Divide both sides by 7.
w=\frac{\sqrt{21}}{7} w=-\frac{\sqrt{21}}{7}
Take the square root of both sides of the equation.
7w^{2}-3=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
w=\frac{0±\sqrt{0^{2}-4\times 7\left(-3\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 0 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{0±\sqrt{-4\times 7\left(-3\right)}}{2\times 7}
Square 0.
w=\frac{0±\sqrt{-28\left(-3\right)}}{2\times 7}
Multiply -4 times 7.
w=\frac{0±\sqrt{84}}{2\times 7}
Multiply -28 times -3.
w=\frac{0±2\sqrt{21}}{2\times 7}
Take the square root of 84.
w=\frac{0±2\sqrt{21}}{14}
Multiply 2 times 7.
w=\frac{\sqrt{21}}{7}
Now solve the equation w=\frac{0±2\sqrt{21}}{14} when ± is plus.
w=-\frac{\sqrt{21}}{7}
Now solve the equation w=\frac{0±2\sqrt{21}}{14} when ± is minus.
w=\frac{\sqrt{21}}{7} w=-\frac{\sqrt{21}}{7}
The equation is now solved.