Solve for v
v=0
Share
Copied to clipboard
7v-4v+36=4\left(5v+9\right)
Use the distributive property to multiply -4 by v-9.
3v+36=4\left(5v+9\right)
Combine 7v and -4v to get 3v.
3v+36=20v+36
Use the distributive property to multiply 4 by 5v+9.
3v+36-20v=36
Subtract 20v from both sides.
-17v+36=36
Combine 3v and -20v to get -17v.
-17v=36-36
Subtract 36 from both sides.
-17v=0
Subtract 36 from 36 to get 0.
v=0
Product of two numbers is equal to 0 if at least one of them is 0. Since -17 is not equal to 0, v must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}