Solve for v
v=-\frac{\sqrt{553}i}{7}\approx -0-3.359421719i
v=\frac{\sqrt{553}i}{7}\approx 3.359421719i
Share
Copied to clipboard
7v^{2}=-86+7
Add 7 to both sides.
7v^{2}=-79
Add -86 and 7 to get -79.
v^{2}=-\frac{79}{7}
Divide both sides by 7.
v=\frac{\sqrt{553}i}{7} v=-\frac{\sqrt{553}i}{7}
The equation is now solved.
7v^{2}-7+86=0
Add 86 to both sides.
7v^{2}+79=0
Add -7 and 86 to get 79.
v=\frac{0±\sqrt{0^{2}-4\times 7\times 79}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 0 for b, and 79 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{0±\sqrt{-4\times 7\times 79}}{2\times 7}
Square 0.
v=\frac{0±\sqrt{-28\times 79}}{2\times 7}
Multiply -4 times 7.
v=\frac{0±\sqrt{-2212}}{2\times 7}
Multiply -28 times 79.
v=\frac{0±2\sqrt{553}i}{2\times 7}
Take the square root of -2212.
v=\frac{0±2\sqrt{553}i}{14}
Multiply 2 times 7.
v=\frac{\sqrt{553}i}{7}
Now solve the equation v=\frac{0±2\sqrt{553}i}{14} when ± is plus.
v=-\frac{\sqrt{553}i}{7}
Now solve the equation v=\frac{0±2\sqrt{553}i}{14} when ± is minus.
v=\frac{\sqrt{553}i}{7} v=-\frac{\sqrt{553}i}{7}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}