Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

7v^{2}=-86+7
Add 7 to both sides.
7v^{2}=-79
Add -86 and 7 to get -79.
v^{2}=-\frac{79}{7}
Divide both sides by 7.
v=\frac{\sqrt{553}i}{7} v=-\frac{\sqrt{553}i}{7}
The equation is now solved.
7v^{2}-7+86=0
Add 86 to both sides.
7v^{2}+79=0
Add -7 and 86 to get 79.
v=\frac{0±\sqrt{0^{2}-4\times 7\times 79}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 0 for b, and 79 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{0±\sqrt{-4\times 7\times 79}}{2\times 7}
Square 0.
v=\frac{0±\sqrt{-28\times 79}}{2\times 7}
Multiply -4 times 7.
v=\frac{0±\sqrt{-2212}}{2\times 7}
Multiply -28 times 79.
v=\frac{0±2\sqrt{553}i}{2\times 7}
Take the square root of -2212.
v=\frac{0±2\sqrt{553}i}{14}
Multiply 2 times 7.
v=\frac{\sqrt{553}i}{7}
Now solve the equation v=\frac{0±2\sqrt{553}i}{14} when ± is plus.
v=-\frac{\sqrt{553}i}{7}
Now solve the equation v=\frac{0±2\sqrt{553}i}{14} when ± is minus.
v=\frac{\sqrt{553}i}{7} v=-\frac{\sqrt{553}i}{7}
The equation is now solved.