Solve for u
u=-\frac{13}{123}\approx -0.105691057
Share
Copied to clipboard
7u-\frac{4}{5}+\frac{6}{5}u=-\frac{5}{3}
Add \frac{6}{5}u to both sides.
\frac{41}{5}u-\frac{4}{5}=-\frac{5}{3}
Combine 7u and \frac{6}{5}u to get \frac{41}{5}u.
\frac{41}{5}u=-\frac{5}{3}+\frac{4}{5}
Add \frac{4}{5} to both sides.
\frac{41}{5}u=-\frac{25}{15}+\frac{12}{15}
Least common multiple of 3 and 5 is 15. Convert -\frac{5}{3} and \frac{4}{5} to fractions with denominator 15.
\frac{41}{5}u=\frac{-25+12}{15}
Since -\frac{25}{15} and \frac{12}{15} have the same denominator, add them by adding their numerators.
\frac{41}{5}u=-\frac{13}{15}
Add -25 and 12 to get -13.
u=-\frac{13}{15}\times \frac{5}{41}
Multiply both sides by \frac{5}{41}, the reciprocal of \frac{41}{5}.
u=\frac{-13\times 5}{15\times 41}
Multiply -\frac{13}{15} times \frac{5}{41} by multiplying numerator times numerator and denominator times denominator.
u=\frac{-65}{615}
Do the multiplications in the fraction \frac{-13\times 5}{15\times 41}.
u=-\frac{13}{123}
Reduce the fraction \frac{-65}{615} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}