Solve for t
t=\frac{i\times 3\sqrt{3}}{7}+\frac{9}{14}\approx 0.642857143+0.742307489i
t=-\frac{i\times 3\sqrt{3}}{7}+\frac{9}{14}\approx 0.642857143-0.742307489i
Share
Copied to clipboard
7t^{2}-9t+6.75=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 7\times 6.75}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -9 for b, and 6.75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-9\right)±\sqrt{81-4\times 7\times 6.75}}{2\times 7}
Square -9.
t=\frac{-\left(-9\right)±\sqrt{81-28\times 6.75}}{2\times 7}
Multiply -4 times 7.
t=\frac{-\left(-9\right)±\sqrt{81-189}}{2\times 7}
Multiply -28 times 6.75.
t=\frac{-\left(-9\right)±\sqrt{-108}}{2\times 7}
Add 81 to -189.
t=\frac{-\left(-9\right)±6\sqrt{3}i}{2\times 7}
Take the square root of -108.
t=\frac{9±6\sqrt{3}i}{2\times 7}
The opposite of -9 is 9.
t=\frac{9±6\sqrt{3}i}{14}
Multiply 2 times 7.
t=\frac{9+6\sqrt{3}i}{14}
Now solve the equation t=\frac{9±6\sqrt{3}i}{14} when ± is plus. Add 9 to 6i\sqrt{3}.
t=\frac{3\sqrt{3}i}{7}+\frac{9}{14}
Divide 9+6i\sqrt{3} by 14.
t=\frac{-6\sqrt{3}i+9}{14}
Now solve the equation t=\frac{9±6\sqrt{3}i}{14} when ± is minus. Subtract 6i\sqrt{3} from 9.
t=-\frac{3\sqrt{3}i}{7}+\frac{9}{14}
Divide 9-6i\sqrt{3} by 14.
t=\frac{3\sqrt{3}i}{7}+\frac{9}{14} t=-\frac{3\sqrt{3}i}{7}+\frac{9}{14}
The equation is now solved.
7t^{2}-9t+6.75=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7t^{2}-9t+6.75-6.75=-6.75
Subtract 6.75 from both sides of the equation.
7t^{2}-9t=-6.75
Subtracting 6.75 from itself leaves 0.
\frac{7t^{2}-9t}{7}=-\frac{6.75}{7}
Divide both sides by 7.
t^{2}-\frac{9}{7}t=-\frac{6.75}{7}
Dividing by 7 undoes the multiplication by 7.
t^{2}-\frac{9}{7}t=-\frac{27}{28}
Divide -6.75 by 7.
t^{2}-\frac{9}{7}t+\left(-\frac{9}{14}\right)^{2}=-\frac{27}{28}+\left(-\frac{9}{14}\right)^{2}
Divide -\frac{9}{7}, the coefficient of the x term, by 2 to get -\frac{9}{14}. Then add the square of -\frac{9}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{9}{7}t+\frac{81}{196}=-\frac{27}{28}+\frac{81}{196}
Square -\frac{9}{14} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{9}{7}t+\frac{81}{196}=-\frac{27}{49}
Add -\frac{27}{28} to \frac{81}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{9}{14}\right)^{2}=-\frac{27}{49}
Factor t^{2}-\frac{9}{7}t+\frac{81}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{9}{14}\right)^{2}}=\sqrt{-\frac{27}{49}}
Take the square root of both sides of the equation.
t-\frac{9}{14}=\frac{3\sqrt{3}i}{7} t-\frac{9}{14}=-\frac{3\sqrt{3}i}{7}
Simplify.
t=\frac{3\sqrt{3}i}{7}+\frac{9}{14} t=-\frac{3\sqrt{3}i}{7}+\frac{9}{14}
Add \frac{9}{14} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}