Factor
7s\left(t-m\right)\left(m+t\right)\left(m^{2}+t^{2}\right)
Evaluate
7s\left(t^{4}-m^{4}\right)
Share
Copied to clipboard
7\left(st^{4}-sm^{4}\right)
Factor out 7.
s\left(t^{4}-m^{4}\right)
Consider st^{4}-sm^{4}. Factor out s.
\left(t^{2}-m^{2}\right)\left(t^{2}+m^{2}\right)
Consider t^{4}-m^{4}. Rewrite t^{4}-m^{4} as \left(t^{2}\right)^{2}-\left(m^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-m^{2}+t^{2}\right)\left(m^{2}+t^{2}\right)
Reorder the terms.
\left(t-m\right)\left(t+m\right)
Consider -m^{2}+t^{2}. Rewrite -m^{2}+t^{2} as t^{2}-m^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-m+t\right)\left(m+t\right)
Reorder the terms.
7s\left(-m+t\right)\left(m+t\right)\left(m^{2}+t^{2}\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}