Solve for r
r = -\frac{252}{143} = -1\frac{109}{143} \approx -1.762237762
Share
Copied to clipboard
7r-\frac{1}{2}r+12=\frac{6}{11}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
\frac{13}{2}r+12=\frac{6}{11}
Combine 7r and -\frac{1}{2}r to get \frac{13}{2}r.
\frac{13}{2}r=\frac{6}{11}-12
Subtract 12 from both sides.
\frac{13}{2}r=\frac{6}{11}-\frac{132}{11}
Convert 12 to fraction \frac{132}{11}.
\frac{13}{2}r=\frac{6-132}{11}
Since \frac{6}{11} and \frac{132}{11} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{2}r=-\frac{126}{11}
Subtract 132 from 6 to get -126.
r=-\frac{126}{11}\times \frac{2}{13}
Multiply both sides by \frac{2}{13}, the reciprocal of \frac{13}{2}.
r=\frac{-126\times 2}{11\times 13}
Multiply -\frac{126}{11} times \frac{2}{13} by multiplying numerator times numerator and denominator times denominator.
r=\frac{-252}{143}
Do the multiplications in the fraction \frac{-126\times 2}{11\times 13}.
r=-\frac{252}{143}
Fraction \frac{-252}{143} can be rewritten as -\frac{252}{143} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}