Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

7r^{2}+40r-700=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-40±\sqrt{40^{2}-4\times 7\left(-700\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 40 for b, and -700 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-40±\sqrt{1600-4\times 7\left(-700\right)}}{2\times 7}
Square 40.
r=\frac{-40±\sqrt{1600-28\left(-700\right)}}{2\times 7}
Multiply -4 times 7.
r=\frac{-40±\sqrt{1600+19600}}{2\times 7}
Multiply -28 times -700.
r=\frac{-40±\sqrt{21200}}{2\times 7}
Add 1600 to 19600.
r=\frac{-40±20\sqrt{53}}{2\times 7}
Take the square root of 21200.
r=\frac{-40±20\sqrt{53}}{14}
Multiply 2 times 7.
r=\frac{20\sqrt{53}-40}{14}
Now solve the equation r=\frac{-40±20\sqrt{53}}{14} when ± is plus. Add -40 to 20\sqrt{53}.
r=\frac{10\sqrt{53}-20}{7}
Divide -40+20\sqrt{53} by 14.
r=\frac{-20\sqrt{53}-40}{14}
Now solve the equation r=\frac{-40±20\sqrt{53}}{14} when ± is minus. Subtract 20\sqrt{53} from -40.
r=\frac{-10\sqrt{53}-20}{7}
Divide -40-20\sqrt{53} by 14.
r=\frac{10\sqrt{53}-20}{7} r=\frac{-10\sqrt{53}-20}{7}
The equation is now solved.
7r^{2}+40r-700=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7r^{2}+40r-700-\left(-700\right)=-\left(-700\right)
Add 700 to both sides of the equation.
7r^{2}+40r=-\left(-700\right)
Subtracting -700 from itself leaves 0.
7r^{2}+40r=700
Subtract -700 from 0.
\frac{7r^{2}+40r}{7}=\frac{700}{7}
Divide both sides by 7.
r^{2}+\frac{40}{7}r=\frac{700}{7}
Dividing by 7 undoes the multiplication by 7.
r^{2}+\frac{40}{7}r=100
Divide 700 by 7.
r^{2}+\frac{40}{7}r+\left(\frac{20}{7}\right)^{2}=100+\left(\frac{20}{7}\right)^{2}
Divide \frac{40}{7}, the coefficient of the x term, by 2 to get \frac{20}{7}. Then add the square of \frac{20}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}+\frac{40}{7}r+\frac{400}{49}=100+\frac{400}{49}
Square \frac{20}{7} by squaring both the numerator and the denominator of the fraction.
r^{2}+\frac{40}{7}r+\frac{400}{49}=\frac{5300}{49}
Add 100 to \frac{400}{49}.
\left(r+\frac{20}{7}\right)^{2}=\frac{5300}{49}
Factor r^{2}+\frac{40}{7}r+\frac{400}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+\frac{20}{7}\right)^{2}}=\sqrt{\frac{5300}{49}}
Take the square root of both sides of the equation.
r+\frac{20}{7}=\frac{10\sqrt{53}}{7} r+\frac{20}{7}=-\frac{10\sqrt{53}}{7}
Simplify.
r=\frac{10\sqrt{53}-20}{7} r=\frac{-10\sqrt{53}-20}{7}
Subtract \frac{20}{7} from both sides of the equation.
x ^ 2 +\frac{40}{7}x -100 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 7
r + s = -\frac{40}{7} rs = -100
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{20}{7} - u s = -\frac{20}{7} + u
Two numbers r and s sum up to -\frac{40}{7} exactly when the average of the two numbers is \frac{1}{2}*-\frac{40}{7} = -\frac{20}{7}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{20}{7} - u) (-\frac{20}{7} + u) = -100
To solve for unknown quantity u, substitute these in the product equation rs = -100
\frac{400}{49} - u^2 = -100
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -100-\frac{400}{49} = -\frac{5300}{49}
Simplify the expression by subtracting \frac{400}{49} on both sides
u^2 = \frac{5300}{49} u = \pm\sqrt{\frac{5300}{49}} = \pm \frac{\sqrt{5300}}{7}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{20}{7} - \frac{\sqrt{5300}}{7} = -13.257 s = -\frac{20}{7} + \frac{\sqrt{5300}}{7} = 7.543
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.