Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

7\left(p^{2}q^{2}-20p^{2}q+84p^{2}\right)
Factor out 7.
p^{2}\left(q^{2}-20q+84\right)
Consider p^{2}q^{2}-20p^{2}q+84p^{2}. Factor out p^{2}.
a+b=-20 ab=1\times 84=84
Consider q^{2}-20q+84. Factor the expression by grouping. First, the expression needs to be rewritten as q^{2}+aq+bq+84. To find a and b, set up a system to be solved.
-1,-84 -2,-42 -3,-28 -4,-21 -6,-14 -7,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 84.
-1-84=-85 -2-42=-44 -3-28=-31 -4-21=-25 -6-14=-20 -7-12=-19
Calculate the sum for each pair.
a=-14 b=-6
The solution is the pair that gives sum -20.
\left(q^{2}-14q\right)+\left(-6q+84\right)
Rewrite q^{2}-20q+84 as \left(q^{2}-14q\right)+\left(-6q+84\right).
q\left(q-14\right)-6\left(q-14\right)
Factor out q in the first and -6 in the second group.
\left(q-14\right)\left(q-6\right)
Factor out common term q-14 by using distributive property.
7p^{2}\left(q-14\right)\left(q-6\right)
Rewrite the complete factored expression.