Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

7\left(k^{2}-6k\right)
Factor out 7.
k\left(k-6\right)
Consider k^{2}-6k. Factor out k.
7k\left(k-6\right)
Rewrite the complete factored expression.
7k^{2}-42k=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
k=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-42\right)±42}{2\times 7}
Take the square root of \left(-42\right)^{2}.
k=\frac{42±42}{2\times 7}
The opposite of -42 is 42.
k=\frac{42±42}{14}
Multiply 2 times 7.
k=\frac{84}{14}
Now solve the equation k=\frac{42±42}{14} when ± is plus. Add 42 to 42.
k=6
Divide 84 by 14.
k=\frac{0}{14}
Now solve the equation k=\frac{42±42}{14} when ± is minus. Subtract 42 from 42.
k=0
Divide 0 by 14.
7k^{2}-42k=7\left(k-6\right)k
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 6 for x_{1} and 0 for x_{2}.