Evaluate
9+4i
Real Part
9
Share
Copied to clipboard
7i-6i^{6}+3i^{3}-2i^{2}+1
Calculate i to the power of 17 and get i.
7i-6\left(-1\right)+3i^{3}-2i^{2}+1
Calculate i to the power of 6 and get -1.
7i-\left(-6\right)+3i^{3}-2i^{2}+1
Multiply 6 and -1 to get -6.
7i+6+3i^{3}-2i^{2}+1
The opposite of -6 is 6.
7i+6+3\left(-i\right)-2i^{2}+1
Calculate i to the power of 3 and get -i.
7i+6-3i-2i^{2}+1
Multiply 3 and -i to get -3i.
6+4i-2i^{2}+1
Do the additions in 7i+6-3i.
6+4i-2\left(-1\right)+1
Calculate i to the power of 2 and get -1.
6+4i-\left(-2\right)+1
Multiply 2 and -1 to get -2.
6+4i+2+1
The opposite of -2 is 2.
8+4i+1
Add 6+4i and 2 to get 8+4i.
9+4i
Add 8+4i and 1 to get 9+4i.
Re(7i-6i^{6}+3i^{3}-2i^{2}+1)
Calculate i to the power of 17 and get i.
Re(7i-6\left(-1\right)+3i^{3}-2i^{2}+1)
Calculate i to the power of 6 and get -1.
Re(7i-\left(-6\right)+3i^{3}-2i^{2}+1)
Multiply 6 and -1 to get -6.
Re(7i+6+3i^{3}-2i^{2}+1)
The opposite of -6 is 6.
Re(7i+6+3\left(-i\right)-2i^{2}+1)
Calculate i to the power of 3 and get -i.
Re(7i+6-3i-2i^{2}+1)
Multiply 3 and -i to get -3i.
Re(6+4i-2i^{2}+1)
Do the additions in 7i+6-3i.
Re(6+4i-2\left(-1\right)+1)
Calculate i to the power of 2 and get -1.
Re(6+4i-\left(-2\right)+1)
Multiply 2 and -1 to get -2.
Re(6+4i+2+1)
The opposite of -2 is 2.
Re(8+4i+1)
Add 6+4i and 2 to get 8+4i.
Re(9+4i)
Add 8+4i and 1 to get 9+4i.
9
The real part of 9+4i is 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}