Solve for a
a=2
a=\frac{1}{2}=0.5
Share
Copied to clipboard
35a-14a^{2}=14
Use the distributive property to multiply 7a by 5-2a.
35a-14a^{2}-14=0
Subtract 14 from both sides.
-14a^{2}+35a-14=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-35±\sqrt{35^{2}-4\left(-14\right)\left(-14\right)}}{2\left(-14\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -14 for a, 35 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-35±\sqrt{1225-4\left(-14\right)\left(-14\right)}}{2\left(-14\right)}
Square 35.
a=\frac{-35±\sqrt{1225+56\left(-14\right)}}{2\left(-14\right)}
Multiply -4 times -14.
a=\frac{-35±\sqrt{1225-784}}{2\left(-14\right)}
Multiply 56 times -14.
a=\frac{-35±\sqrt{441}}{2\left(-14\right)}
Add 1225 to -784.
a=\frac{-35±21}{2\left(-14\right)}
Take the square root of 441.
a=\frac{-35±21}{-28}
Multiply 2 times -14.
a=-\frac{14}{-28}
Now solve the equation a=\frac{-35±21}{-28} when ± is plus. Add -35 to 21.
a=\frac{1}{2}
Reduce the fraction \frac{-14}{-28} to lowest terms by extracting and canceling out 14.
a=-\frac{56}{-28}
Now solve the equation a=\frac{-35±21}{-28} when ± is minus. Subtract 21 from -35.
a=2
Divide -56 by -28.
a=\frac{1}{2} a=2
The equation is now solved.
35a-14a^{2}=14
Use the distributive property to multiply 7a by 5-2a.
-14a^{2}+35a=14
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-14a^{2}+35a}{-14}=\frac{14}{-14}
Divide both sides by -14.
a^{2}+\frac{35}{-14}a=\frac{14}{-14}
Dividing by -14 undoes the multiplication by -14.
a^{2}-\frac{5}{2}a=\frac{14}{-14}
Reduce the fraction \frac{35}{-14} to lowest terms by extracting and canceling out 7.
a^{2}-\frac{5}{2}a=-1
Divide 14 by -14.
a^{2}-\frac{5}{2}a+\left(-\frac{5}{4}\right)^{2}=-1+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{5}{2}a+\frac{25}{16}=-1+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{5}{2}a+\frac{25}{16}=\frac{9}{16}
Add -1 to \frac{25}{16}.
\left(a-\frac{5}{4}\right)^{2}=\frac{9}{16}
Factor a^{2}-\frac{5}{2}a+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{5}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
a-\frac{5}{4}=\frac{3}{4} a-\frac{5}{4}=-\frac{3}{4}
Simplify.
a=2 a=\frac{1}{2}
Add \frac{5}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}