Solve for a
a=-1
a=0
Share
Copied to clipboard
7a^{2}+14a-7a=0
Subtract 7a from both sides.
7a^{2}+7a=0
Combine 14a and -7a to get 7a.
a=\frac{-7±\sqrt{7^{2}}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 7 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-7±7}{2\times 7}
Take the square root of 7^{2}.
a=\frac{-7±7}{14}
Multiply 2 times 7.
a=\frac{0}{14}
Now solve the equation a=\frac{-7±7}{14} when ± is plus. Add -7 to 7.
a=0
Divide 0 by 14.
a=-\frac{14}{14}
Now solve the equation a=\frac{-7±7}{14} when ± is minus. Subtract 7 from -7.
a=-1
Divide -14 by 14.
a=0 a=-1
The equation is now solved.
7a^{2}+14a-7a=0
Subtract 7a from both sides.
7a^{2}+7a=0
Combine 14a and -7a to get 7a.
\frac{7a^{2}+7a}{7}=\frac{0}{7}
Divide both sides by 7.
a^{2}+\frac{7}{7}a=\frac{0}{7}
Dividing by 7 undoes the multiplication by 7.
a^{2}+a=\frac{0}{7}
Divide 7 by 7.
a^{2}+a=0
Divide 0 by 7.
a^{2}+a+\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+a+\frac{1}{4}=\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
\left(a+\frac{1}{2}\right)^{2}=\frac{1}{4}
Factor a^{2}+a+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
a+\frac{1}{2}=\frac{1}{2} a+\frac{1}{2}=-\frac{1}{2}
Simplify.
a=0 a=-1
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}