Solve for P
P=\frac{2-2k}{7}
Solve for k
k=-\frac{7P}{2}+1
Share
Copied to clipboard
\frac{7}{2}P=8\times \left(\frac{1}{2}\right)^{3}-k
Multiply 7 and \frac{1}{2} to get \frac{7}{2}.
\frac{7}{2}P=8\times \frac{1}{8}-k
Calculate \frac{1}{2} to the power of 3 and get \frac{1}{8}.
\frac{7}{2}P=1-k
Multiply 8 and \frac{1}{8} to get 1.
\frac{\frac{7}{2}P}{\frac{7}{2}}=\frac{1-k}{\frac{7}{2}}
Divide both sides of the equation by \frac{7}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
P=\frac{1-k}{\frac{7}{2}}
Dividing by \frac{7}{2} undoes the multiplication by \frac{7}{2}.
P=\frac{2-2k}{7}
Divide 1-k by \frac{7}{2} by multiplying 1-k by the reciprocal of \frac{7}{2}.
\frac{7}{2}P=8\times \left(\frac{1}{2}\right)^{3}-k
Multiply 7 and \frac{1}{2} to get \frac{7}{2}.
\frac{7}{2}P=8\times \frac{1}{8}-k
Calculate \frac{1}{2} to the power of 3 and get \frac{1}{8}.
\frac{7}{2}P=1-k
Multiply 8 and \frac{1}{8} to get 1.
1-k=\frac{7}{2}P
Swap sides so that all variable terms are on the left hand side.
-k=\frac{7}{2}P-1
Subtract 1 from both sides.
-k=\frac{7P}{2}-1
The equation is in standard form.
\frac{-k}{-1}=\frac{\frac{7P}{2}-1}{-1}
Divide both sides by -1.
k=\frac{\frac{7P}{2}-1}{-1}
Dividing by -1 undoes the multiplication by -1.
k=-\frac{7P}{2}+1
Divide \frac{7P}{2}-1 by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}