Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-a^{2}-4a+7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 7}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 7}}{2\left(-1\right)}
Square -4.
a=\frac{-\left(-4\right)±\sqrt{16+4\times 7}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-\left(-4\right)±\sqrt{16+28}}{2\left(-1\right)}
Multiply 4 times 7.
a=\frac{-\left(-4\right)±\sqrt{44}}{2\left(-1\right)}
Add 16 to 28.
a=\frac{-\left(-4\right)±2\sqrt{11}}{2\left(-1\right)}
Take the square root of 44.
a=\frac{4±2\sqrt{11}}{2\left(-1\right)}
The opposite of -4 is 4.
a=\frac{4±2\sqrt{11}}{-2}
Multiply 2 times -1.
a=\frac{2\sqrt{11}+4}{-2}
Now solve the equation a=\frac{4±2\sqrt{11}}{-2} when ± is plus. Add 4 to 2\sqrt{11}.
a=-\left(\sqrt{11}+2\right)
Divide 4+2\sqrt{11} by -2.
a=\frac{4-2\sqrt{11}}{-2}
Now solve the equation a=\frac{4±2\sqrt{11}}{-2} when ± is minus. Subtract 2\sqrt{11} from 4.
a=\sqrt{11}-2
Divide 4-2\sqrt{11} by -2.
-a^{2}-4a+7=-\left(a-\left(-\left(\sqrt{11}+2\right)\right)\right)\left(a-\left(\sqrt{11}-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\left(2+\sqrt{11}\right) for x_{1} and -2+\sqrt{11} for x_{2}.