Solve for x
x=\frac{14}{19}\approx 0.736842105
Graph
Share
Copied to clipboard
7-6x+6=7x-\left(1-6x\right)
Use the distributive property to multiply -6 by x-1.
13-6x=7x-\left(1-6x\right)
Add 7 and 6 to get 13.
13-6x=7x-1-\left(-6x\right)
To find the opposite of 1-6x, find the opposite of each term.
13-6x=7x-1+6x
The opposite of -6x is 6x.
13-6x=13x-1
Combine 7x and 6x to get 13x.
13-6x-13x=-1
Subtract 13x from both sides.
13-19x=-1
Combine -6x and -13x to get -19x.
-19x=-1-13
Subtract 13 from both sides.
-19x=-14
Subtract 13 from -1 to get -14.
x=\frac{-14}{-19}
Divide both sides by -19.
x=\frac{14}{19}
Fraction \frac{-14}{-19} can be simplified to \frac{14}{19} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}