Solve for x
x = \frac{57}{14} = 4\frac{1}{14} \approx 4.071428571
Graph
Share
Copied to clipboard
28-3\left(2x-5\right)=2\left(4x-7\right)
Multiply both sides of the equation by 4, the least common multiple of 4,2.
28-6x+15=2\left(4x-7\right)
Use the distributive property to multiply -3 by 2x-5.
43-6x=2\left(4x-7\right)
Add 28 and 15 to get 43.
43-6x=8x-14
Use the distributive property to multiply 2 by 4x-7.
43-6x-8x=-14
Subtract 8x from both sides.
43-14x=-14
Combine -6x and -8x to get -14x.
-14x=-14-43
Subtract 43 from both sides.
-14x=-57
Subtract 43 from -14 to get -57.
x=\frac{-57}{-14}
Divide both sides by -14.
x=\frac{57}{14}
Fraction \frac{-57}{-14} can be simplified to \frac{57}{14} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}